
Semester thesis: Understanding the PPSZ algorithm for

ClSP

Isabelle Hurbain

Spring Semester 2013

Contents

1 Basic concepts and notation 5

2 PPSZ for 3-SAT 7
2.1 The PPSZ algorithm for 3-SAT . 7
2.2 Unique satisfying assignment . 8

2.2.1 Forced and guessed variables . 9
2.2.2 What does it mean for a variable to be forced? 9
2.2.3 Building critical clause trees . 11
2.2.4 Placements, critical clause trees and forced variables 12
2.2.5 Random deletion in infinite binary trees 14
2.2.6 From infinite to finite trees . 15
2.2.7 From independent to dependent labels . 16
2.2.8 Integrating over the place of the root . 17
2.2.9 Summary . 19

2.3 Multiple satisfying assignments . 19
2.3.1 Problem assessment . 20
2.3.2 Proof idea . 20
2.3.3 Definition of a cost function . 21
2.3.4 Proving Lemma 2.19 . 24

2.4 Summary . 30

3 A weak version of PPSZ for (d, k)-ClSP 32
3.1 The algorithm . 32
3.2 Unique satisfying assignment . 33

3.2.1 Forced and guessed variables . 34
3.2.2 Building critical clause trees . 34
3.2.3 Critical clause trees and forced variables 35
3.2.4 Random deletion in infinite and finite trees of degree (d− 1)(k − 1) . . . 37
3.2.5 From independent to dependent labels . 38
3.2.6 Integrating over the rank of the root . 39

3.3 Multiple satisfying assignments . 45
3.3.1 Definition of a cost function . 45
3.3.2 Proving Lemma 3.19 . 46
3.3.3 Using the induction hypothesis . 48

3.4 Summary . 55

1

4 A strong version of PPSZ for (d, k)-ClSP 57
4.1 The algorithm . 57
4.2 Unique satisfying assignment . 58

4.2.1 The sets A(x, π,D) . 58
4.2.2 Building critical clause trees . 59
4.2.3 Critical trees and A(x, π,D) . 60
4.2.4 Random deletion in one infinite tree . 61
4.2.5 From one tree to (d− 1) trees . 62
4.2.6 From infinite to finite trees . 63
4.2.7 From independent to dependent labels . 65
4.2.8 Integrating over the rank of the root . 67
4.2.9 Summary . 70

4.3 Multiple satisfying assignments . 70
4.3.1 Definition of a cost function . 71
4.3.2 Towards the proof of Conjecture 4.19 . 73

A Glossary of classical notions 80
A.1 Jensen’s inequality . 80
A.2 Monotone convergence theorem . 80
A.3 FKG inequality . 81
A.4 Riemann sums approximations . 82

B Complementary proofs 83
B.1 General inequalities . 83

B.1.1 An inequality about logarithms . 83
B.1.2 An inequality about power functions . 83
B.1.3 A power identity . 84

B.2 Correlation inequalities . 84
B.2.1 Proof of Lemma 2.24 . 84

B.3 Proof of Lemma 4.12 . 84
B.4 Proof of Lemma 4.8 . 85

2

Introduction

SAT and PPSZ

The satisfiability problem, or SAT, is the archetypical NP-complete problem. It can be formu-
lated as follows: given a boolean formula F on a variable domain V , is there an assignment
of the variables of V such that F is satisfied, i.e. it evaluates to true? In this thesis, we will
consider boolean formulas in the conjunctive normal form (CNF formulas), and more precisely
formulas that have clauses of size at most k, which we call k−SAT formulas.

The fastest known algorithm to solve k−SAT is called PPSZ, after its authors Paturi, Pudlák,
Saks and Zane [4]. In the original paper, the best bounds for the algorithm were proved only
for the case where the formula was guaranteed to have a single satisfying assignment. Hertli [2]
later used a slight modification of the algorithm to show that these bounds hold in general.

The PPSZ algorithm is itself a modification of the PPZ algorithm, after Paturi, Pudlák and
Zane [5]. The idea of PPZ is very simple: process the variables of the domain in a random order.
For a given variable x, if there is a clause {x} or a clause {x̄}, set the variable according to that
clause; otherwise, pick a value at random. The PPSZ algorithm extends this idea by picking not
only unit clauses, but small subsets of clauses. If some small subset of clauses is only compatible
with one given assignment of the variable, set the variable accordingly; otherwise, pick a value
at random.

Clause satisfaction problems

There is a natural extension of the k−SAT formulas, namely what we call k−ClSP formulas,
where ClSP stands for Clause Satisfaction Problems. Instead of considering boolean values, we
consider in ClSP formulas a domain {1, ..., d} of d values. The literals of such formulas are of the
type (x 6= c) where x ∈ V and c ∈ {1, ..., d}. The rest of the definition stays the same. Once this
problem is defined, extending PPZ and PPSZ to solving such problems, and trying to bound the
running time of these algorithms on k−ClSP is also pretty natural.

Thesis outline

This thesis aims at giving a full, notationally cohesive state of the art of the analysis of PPSZ for
k−ClSP formulas. In Chapter 1, we will define precisely the setup, terminology and notations
used in this thesis. Chapter 2 details the proof of the achieved runtime of PPSZ for 3-SAT. It
must be seen as the foundation on which further work is based. The proof outline used in the
3-SAT case will be re-used in the ClSP case. The proofs of this chapter are given in the original
PPSZ paper by Paturi, Pudlák, Saks and Zane [4] and in the subsequent paper by Hertli [2]. The
framework and write-up of the proof are heavily based on Welzl lecture notes [8]. Chapter 3 and

3

Chapter 4 are following the proof outline of Chapter 2 to give runtime bounds for two versions
of PPSZ adapted to ClSP. Chapter 3 and Chapter 4 are based on the work of Szedlák [7] and
Millius [3].

Acknowledgements

Many thanks to Timon Hertli, my advisor, whose advice and great attention to details were
greatly appreciated. I also would like to thank Dominik Scheder, May Szedlák, and Sebastian
Millius for their previous work that made this thesis at all possible. Finally, the SAT course run
in 2012 by Emo Welzl and Robin Moser was truly inspiring; many thanks to them as well.

4

Chapter 1

Basic concepts and notation

We use the notational framework presented in [8] and used in [2], [7] and [3].

k−SAT

Let V be a set of boolean variables. A literal l over x ∈ V is a variable x or a complemented
variable x̄. A clause C over V is a finite set of literals over pairwise distinct variables from V . A
formula F in conjunctive normal form, or a CNF formula, is a finite set of clauses. We interpret
this set of clauses by joining the literals in a clause by a logical OR and by joining the clauses by
a logical AND. A k−SAT formula F is a CNF formula in which every clause contains at most k
literals.

(d, k)−ClSP

We extend the above definition to define k-ClSP formulas. Let us denote by [d] = {1, ..., d} the
set of integers from 1 to d. Let V be a set of variables that take their values in [d]. A literal l
over x ∈ V is of the form (x 6= c) for c ∈ {1, ..., d}. A clause C over V is a finite set of literals
over variables from V . A clause satisfaction problem formula or ClSP formula is a finite set of
clauses. We interpret this set of clauses by joining the literals in a clause by a logical OR and by
joining the clauses by a logical AND. A (d, k)−ClSP formula is a ClSP formula over the domain
[d] where every clause contains at at most k literals.

Observe that this definition is equivalent to the SAT definition for d = 2, and that a (2,
3)−ClSP formula is a 3-SAT formula. In what follows, we will consequently give the definitions
in the more general k−ClSP setup; they can easily be applied to the standard SAT framework.

Variable sets and assignments

Let V (C) be the set of variables in a constraint C and V (F) be the set of variables in F , i.e. the
union of the sets of variables of each constraint. Let n(F) = |V (F)| be the number of variables.
We sometimes write n and V instead of n(F) and V (F) if it is clear from the context which
formula F we are referring to.

An assignment α is defined as a function α : V (F)→ [d] assigning to each variable an element
of the domain. A partial assignment on a set V is a function which maps a subset W ⊆ V to the
domain [d]. For a ClSP F and a partial assignment α on V (F), we denote by F [α] the restriction

5

of F to α, that is the ClSP that is obtained by replacing the variables in the domain of α by
their assigned values. We denote a value assignment l of a variable x to a value c as l = x 7→ c.
For a value assignment l we denote by vbl(l) the variable which l assigns a value to. We can
interpret l as a partial assignment on V (F). Similarly, we interpret a partial assignment α on
V (F) as a set of value assignments {x 7→ c}. We denote, for l : x 7→ c, α(x) = c.

Two assignments α and α′ are compatible if, for every variable x that is assigned in both
α and α′, α(x) = α′(x). We can define the union of two compatible assignments α ∪ α′ as the
union of the set of assignments of both assignments. If one of the assignments is a single value
assignment l : x 7→ c, we will use the shorthand α[l] to denote α ∪ {x 7→ c} or α ∪ {l}.

An assignment α on V is called satisfying if F [α] interpreted as a logical formula in conjunctive
normal form evaluates to true. By sat(F), we denote the set of all satisfying assignments on
V (F). A formula F is called satisfiable if sat(F) 6= ∅ and unsatisfiable otherwise.

Implication and D-implication

Let F be a ClSP formula, let D ∈ N0, and let u be a literal. We say that F implies u, in writing
F � u, if any assignment α satisfying F also satisfies u. We say that F D-implies u, in writing
F � u, if there is some G ⊆ F with |G| ≤ D having G � u. We say that F does not imply
(respectively does not D-imply) u, in writing F 2 u (respectively F 2D u) if there exists an
assignment α satisfying F that does not satisfy u (respectively if no G ⊆ F with |G| ≤ D is such
that G 2 u).

Let x be a variable; we say that F does not imply (respectively does not D-imply) x, in
writing F 2 x (respectively does not D-imply x), in writing F 2 x (respectively F 2 x) if
it is not true that there exists c ∈ [d] such that, for all c′ 6= c, F � (x 6= c′) (respectively
F �D (x 6= c′)).

6

Chapter 2

PPSZ for 3-SAT

Before we start studying PPSZ in the ClSP case, we explain its analysis for the (simpler) 3-SAT
case. 3-SAT can be seen as a (2, 3)-ClSP; it is hence a restriction of the general (d,k)-ClSP
problem. This chapter is heavily based on [8].

2.1 The PPSZ algorithm for 3-SAT

Consider the following informal algorithm. Given a CNF formula F , choose a random variable
x ∈ vbl(F). If the clause {x} or the clause {x̄} appears in F , set x so that it satisfies that unit
clause. Otherwise, set x randomly. Then iterate.

This randomized algorithm is due to Paturi, Pudlák and Zane [5] and is named PPZ after
its authors. We are interested in a generalized version of this algorithm, namely PPSZ (after its
authors Paturi, Pudlák, Saks and Zane [4]). The idea of PPSZ is that we are not necessarily
looking at a direct way to deduce the value of the variable that we treat, but we’re allowing to
deduce that value from several clauses. An easy example of that would be that, for the formula
{x, y, z}, {x, ȳ, z̄}, {x, ȳ, z}, {x, y, z̄}, then the value of x is forced to 1 because we cannot satisfy
the formula for x = 0.

More formally, we define the concept of D-implication for SAT as follows:

Definition 2.1. [8] Let F be a CNF formula, let D ∈ N0, and let u be a literal. We say that
F implies u, in writing F � u, if any assignment α satisfying F also satisfies u. We say that F
D-implies u, in writing F �D u, if there is some G ⊆ F with |G| ≤ D having G � u.

Let x be a variable; we say that F does not imply (respectively does not D-imply) x, in writing
F 2 x (respectively F 2D x) if it is not true that F � (x = 1) or F � (x = 0) (respectively
F �D (x = 1) or F �D (x = 0)).

Checking whether the clause {x} or {x̄} appears in the formula F (as we do in the PPZ
algorithm) is checking for 1-implication.

The PPSZ algorithm can then be stated informally as follows. Given a CNF formula F ,
choose a random variable x ∈ vbl(F). If F �D x, set x to 1; if F �D x̄, set x to 0; otherwise, set
x randomly. Then iterate.

To state it formally, we model the choice of the random variable and the choice of the random
value as, respectively, a random permutation π and a random assignment β over the variables
of the formula.

We also introduce here a parameter α0 that represents a partial assignment to the variables of
V . This isn’t needed by the algorithm per se; we would run the algorithm with α0 = ∅ to try to

7

get a satisfying assignment of a formula F . However, it simplifies the notation for some parts of
the analysis. We also define, again for ease of notation, U(α0) = V \vbl(α0) and n(α0) = |U(α0)|.
If α is a total assignment, we say that α and α0 are incompatible if ∃x ∈ V : {α(x), α0(x)} = {0,
1} and compatible otherwise. This definition was given for the general case in Chapter 1; here
we simply instantiate it for the SAT case.

With these notations defined, we state the algorithm as follows:

ppsz(F, V, α0, D)

π ← a permutation of U(α0) chosen u.a.r.;
β ← an assignment from {0, 1}U(α0) chosen u.a.r.;
return ppsz(F, V, α0, D, π, β);

ppsz(F, V, α0, D, π, β)

αprog ← α0

for i← 1 to n(α0)
do

x← xπi
if F [αprog] �D x

then αprog(x)← 1
else if F [αprog] �D x̄

then αprog(x)← 0
else αprog(x)← β(x)

if αprog satisfies F
then return αprog

else return ’failure’

Observe that PPSZ always returns “failure” if the formula is unsatisfiable. Our ultimate goal
for this chapter is to prove the following theorem:

Theorem 2.2. For any satisfiable (≤ 3)-CNF formula F on n variables V , ppsz(F, V, ∅, log n)
returns some satisfying assignment with probability Ω(1.3071−n).

This readily implies the following:

Corollary 2.3. There exists a randomized algorithm for 3-SAT with one-sided error that runs
in time O(1.3071n).

The proof of Theorem 2.2 is quite involved. We will hence, as a warm-up, consider the case
of a (≤ 3)-CNF formula F that has exactly one satisfying assignment, and prove, in the first
part of this chapter, the following, weaker, theorem:

Theorem 2.4. For any (≤ 3)-CNF formula F on n variables V which has a unique satisfying
assignment, ppsz(F, V, ∅, log n) returns this assignment with probability Ω(1.3071−n).

2.2 Unique satisfying assignment

In this section, we consider that the formula F that we want to satisfy has a unique satisfying
assignment α∗. Without loss of generality, we suppose that this satisfying assignment is the
all-one assignment, i.e. α∗ = (1, 1, ..., 1). We want to prove that, given this formula F , ppsz(F,
∅, V, log n) does indeed return the all-one assignment with a probability at least Ω(1.3071−n).

In this section, we can also assume that α0 = ∅, U(α0) = V and n(α0) = n.

8

2.2.1 Forced and guessed variables

We define the concepts of forced and guessed variables as follows.

Definition 2.5. [8] Let F be a CNF formula over n variables, α∗ ∈ {0, 1}n a satisfying assign-
ment, α0 a partial assignment that is compatible with α∗, π = (x1, ..., xn(α0)) a permutation
of U(α0) and D ≥ 0. A variable xi is called forced with respect to F , α0, α∗, π and D if
F [α0∪{x1 7→α∗(x1),x2 7→α∗(x2),...,xi−1 7→α∗(xi−1)}] D-implies xi or x̄i. Otherwise, the variable is called
guessed. We denote the set of forced (guessed) variables within U(α0) by Forced(F, α0, α

∗, π,D)
(Guessed(F, α0, α

∗, π,D)).

Observe that ppsz(F, V, α0, D, π, β) returns the satisfying assignment α∗ if and only if β(x) =
α∗(x) for all x ∈ Guessed(F, α0, α

∗, π,D).
From this observation, we can write

Pr
β,π

[ppsz returns α∗] = E
π

[
2−|Guessed(F,α0,α

∗,π,D)|
]

We can apply Jensen’s inequality (see Appendix A.1) with the convex function x 7→ 2−x and
obtain

Pr
β,π

[ppsz returns α∗] ≥ 2−Eπ [|Guessed(F,α0,α
∗,π,D)|] (2.1)

By linearity of expectation, we can write that

E
π

[|Guessed(F, α0, α
∗, π,D)|] =

∑
x∈U(α0)

Pr
π

[x ∈ Guessed(F, α0, α
∗, π,D)] (2.2)

= n(α0)−
∑

x∈U(α0)

Pr
π

[x ∈ Forced(F, α0, α
∗, π,D)] (2.3)

Most of the work of this section will be devoted to bound these individual probabilities, i.e,
for any x ∈ U(α0),Prπ[x ∈ Forced(F, α0, α

∗, π,D)].

2.2.2 What does it mean for a variable to be forced?

This section aims at giving some intuition of the tool that we will be using to prove the bounds
on the probabilities in equation (2.3), namely critical clause trees. We will first develop a small
example before giving the full formalism of these trees.

Consider the formula F = {{x, ȳ, z̄}, {x, v̄, w̄}, {x, y, v}, {x, z, ā}, ...} and the unique satisfying
assignment α∗ = (1, 1, ..., 1). Suppose, also, that we execute ppsz with a permutation π that
considers the variables in this (relative) order: (a,w, x, z, y, v). Suppose, also, that the ppsz
algorithm hasn’t made mistakes so far, and that in particular the variables a and w have been
assigned the value 1. Note that if it is not the case, then ppsz has no chance of succeeding
anyway, so that case is not interesting anymore.

We now consider the status (forced or guessed) of the variable x. If the variable is forced, it
means that we can disprove that the variable x has the value 0. We do this by exhibiting a series
of clauses that, together, prove that the value of x must necessarily be 1. We can, for instance,
imagine two people arguing about the value of x, while drawing a tree on a blackboard.

“Look, x cannot have the value 0, because otherwise the clause {x, ȳ, z̄} wouldn’t be satisfied.

9

x

{x, ȳ, z̄}

— Well, it could also be that y has the value 0, or that z has the value 0.

x

{x, ȳ, z̄}

y z

— Ok, let’s admit for a moment that y can indeed have the value 0. So I need another
argument there... Here it is: if x = 0, then {x, v̄, w̄} cannot be satisfied. And as for z, well, if
both x and z have the value 0, then {x, z, ā} cannot be satisfied either.

x

{x, ȳ, z̄}

y

{x, v̄, w̄}
z

{x, z, ā}

— Well again, for the first clause that you give me, I could say that v or w can have the
value 0. And for the second one, well, a can have the value 0 as well.

x

{x, ȳ, z̄}

y

{x, v̄, w̄}

v

z

{x, z, ā}

w a

— We could say all this, but we would then be wrong. Let’s see: we have already established
that, in our run of ppsz, a and w have the value 1. So we’re stuck there: a and w cannot take
the value 0. And if, as you say, x, y and v all have the value 0, then the clause {x, y, v} cannot
be satisfied.

x

{x, ȳ, z̄}

y

{x, v̄, w̄}

v

{x, y, v}

z

{x, z, ā}

w

= 1

a

= 1

10

— It looks indeed that you were right, and that x cannot have the value 0.”
This reasoning shows that, by looking at 4 clauses, we can establish, given that a and w are

before x in the permutation π, the value of x and hence we have that x ∈ Forced(F, α0, α, π, 4).
We can see that there are two ways in which we can arrive at a contradiction. We can either

exhibit a clause that is incompatible with all the previous hypotheses of the tree building process
(that would be the case of clause {x, y, v} in our example), or we can have a contradiction on a
variable that has already been processed (and set to the correct value) – that would be the case
for the variables a and w in our example.

Suppose now that we build such trees for every variable in a formula. We want these trees
to be valid for any permutation, so we continue to expand them as much as we can. Applying a
given permutation to such trees will in effect make parts of the tree unnecessary, and we may as
well cut them. We will show formally that, for a given permutation, if we cut the nodes labelled
with the variables that are before x (and their children after that), then x is D-implied, where
D is the number of remaining nodes in the tree. From there, we will transform the computation
of the probability (over every permutation) that a variable x is forced into a computation about
binary trees.

2.2.3 Building critical clause trees

Let’s now formalize the above construction in the general case. We construct a collection of
binary trees {Tx}x∈U(α0), each of them called critical clause tree of x.

We consider a formula F that has a unique satisfying assignment. Without loss of generality,
let this unique assignment be α∗ = (1, 1, ..., 1).

Tx is a rooted binary tree, where every node u ∈ V (T) is labelled both with a variable x ∈ V ,
which we denote by var-label(u), and a clause C ∈ F , denoted by clause-label(u). Here is how
Tx is built for a fixed x ∈ U(α0):

1. Start with Tx consisting of a single root. This root has variable label x, and no clause label
yet.

2. As long as there is a leaf u ∈ V (T) that does not yet have a clause label, do the following:

(a) Define W := {var-label(v) | v ∈ V (T) is an ancestor of u in T}, where ancestor in-
cludes u itself and the root.

(b) Define the total assignment µ as

µ : vbl(F)→ {0, 1}, z 7→
{

1− α∗(z) = 0 if z ∈W
α∗(z) = 1 otherwise

(c) Let C ∈ F [α0] be a clause not satisfied by µ. Since µ 6= α∗ and α∗ is the unique
satisfying assignment, such a clause exists. Set clause-label(u) = C.

(d) For each negative literal w ∈ C, create a new leaf, label it with the variable underlying
w, and attach it to u as a child. The new leaf does not yet have a clause label.

We denote the resulting tree by Tx. Note that Tx is not unique for a given x. We will still
consider the collection {Tx}x∈U(α0) to be fixed from now on. Remember that we want to bound
the expected number of nodes in these trees after doing cuts that depend on the permutation
used in PPSZ, and that this number of nodes is related to the number of clauses that imply x
for said permutation. Hence, it may be that another tree for Tx would give a better result, but
the results we get for an arbitrary critical clause tree of x are certainly a valid bound for the
number of clauses that imply x.

11

Note also that, since α∗ satisfies F , every clause in F has at most two negative literals, and
thus in step 2(d) we append at most two children, hence the tree is a binary tree. Suppose v
is an ancestor of u and var-label(v) = y. Since µ(y) = 0, there is no negative literal over y
contained in clause-label(u). Therefore,

Observation 2.6. In Tx, no node has the same var-label as one of its proper ancestors.

This also implies that the height of the tree cannot exceed n, thus the process terminates,
making Tx well-defined.

2.2.4 Placements, critical clause trees and forced variables

We have tried, in Section 2.2.2 to give some intuition of the connection between critical clause
trees and forced variables. We have formalized the definition of said trees in Section 2.2.3; we
will now use them to estimate the probability with which a variable is forced.

To simplify the calculations that await us, we introduce the notion of placements. A placement
of the variables in U(α0)1 is a function π : U(α0)→ [0, 1]. From now on, we do not think about
π as a permutation anymore, but rather as a placement, which is essentially the same. If the
values of π(x) are chosen independently and uniformly at random from [0, 1] for each x ∈ U(α0),
then with probability 1, π is injective and, by sorting the values π(x) we obtain a uniformly
distributed permutation of U(α0). We call π(x) the place of x.

Let γ ∈ [0, 1] and Tx be the critical clause tree of some fixed variable. We call a node u ∈ Tx
reachable at time γ w.r.t. π if there exists a path v0, v1, ..., vm such that v0 is the root of the
tree, vm = u and π(vi) ≥ γ for all 1 ≤ i ≤ m. Let us denote by Reachable(Tx, γ, π) the set of all
nodes in Tx reachable at time γ w.r.t. π. Observe that this set is independent of the place of x.

Lemma 2.7. If we have |Reachable(Tx, π(x), π)| ≤ D, then it holds as well that x ∈ Forced(F,
α0, α

∗, π,D).

Proof. Let α′ be the restriction of α∗ = (1, 1, ..., 1) to the variables y ∈ U(α0) with π(y) < π(x).
By definition, x is forced if there is a formula F ′ ⊆ F [α0∪α′] with |F ′| ≤ D that implies x. Let
G := clause-label(Reachable(Tx, π(x), π)), i.e. the subformula of F consisting of all the clause
labels of reachable nodes in Tx. Since by hypothesis |Reachable(Tx, π(x), π)| ≤ D, then clearly
|G| ≤ D. We claim that G[α0∪α′] implies x.

Suppose, for the sake of contradiction, that G[α0∪α′] 2 x (recall that the unique satisfying
assignment is (1, 1, ...1)). Then we can find an assignment ν : V → {0, 1} which is compatible2

with α0∪α′, which has ν(x) = 0 and which satisfies G. Choose a maximal path in Tx, starting at
the root, x, and containing only nodes v such that ν(var-label(v)) = 0. Since ν(x) = 0, this path
is non-empty. Let u be its endpoint. Since ν is compatible with α∗ on all the variables before x,
it must be that var-label(u) is either x itself or after x, and hence π(var-label(u)) ≥ π(x), and so
u is reachable, by definition. For all children z of u, we have that ν(var-label(z)) = 1 (because
the path is maximal); all ancestors y of u are such that ν(var-label(y)) = 0. By definition of Tx,
clause-label(u) is unsatisfied by ν and, since clause-label(u) ⊆ G, this is a contradiction.

It follows immediately from Lemma 2.7 that, over the uniform choice of π, we have

Pr
π

[x ∈ Forced(F, α0, α
∗, π,D)] ≥ Pr

π
[|Reachable(Tx, π(x), π)| ≤ D] (2.4)

This reduces the problem to a probabilistic calculation on binary trees: what is the probability
that, when sorting the nodes of a fixed binary tree according to a random permutation (caveat:

1Recall that we may have a partial assignment α0 in the call to ppsz; we defined U(α0) = V \vbl(α0), where
V is the whole set of variables.

2Remember that α and α0 are incompatible if ∃x ∈ V : {α(x), α0(x)} = {0, 1} and compatible otherwise.

12

some nodes have the same label and are prescribed to get assigned the same place) and deleting
all nodes whose place is after the root, there will be at most D nodes reacheable?

We will, in the next section, prove the following theorem:

Theorem 2.8. For any ε > 0 there exists Dε ∈ N depending only on ε such that the following
holds. Let T be a finite binary tree and σ : V (T)→ {1, ..., r} a labelling of the nodes of T such
that on each path from the root to a leaf of T , σ is injective. Let X1, X2, ...Xr be real random
variables distributed uniformly from [0, 1] and mutually independently. Consider the experiment
of drawing X1, X2, ..., Xr according to their distribution and then deleting all nodes u from T
(along with the corresponding subtrees) for which Xσ(u) < Xσ(root).

Then the probability that the resultant tree T ′ contains more than Dε nodes is

Pr
X1,...,Xr

[|V (T ′)| > Dε] ≤ S + ε

where

S =
1

2
−
∫ 1

2

0

p2

(1− p)2 dp = 2 ln 2− 1 ≤ 0.3863

Before we prove Theorem 2.8, we see how this theorem allows us to prove Theorem 2.4.
We introduce the notation

SD := sup
T

(
Pr

X1,...,Xr
[|V (T ′)| > D)]

)
where the supremum is over all choices of finite trees with labels T (as in Theorem 2.8) and T ′

is the random tree arising from T by conducting the experiment described in Theorem 2.8. In
this language, the theorem states that

lim
D→∞

SD ≤ S

The limit exists because SD is monotonic (it decreases as D increases) and bounded (because
a probability is greater or equal than 0).

Let us recall equation (2.3):

E
π

[|Guessed(F, α0, α
∗, π,D)|] = n(α0)−

∑
x∈U(α0)

Pr
π

[x ∈ Forced(F, α0, α
∗, π,D)]

Combining it with equation (2.4), we then get

E
π

[|Guessed(F, α0, α
∗, π,D)|] ≤ n(α0)−

∑
x∈U(α0)

Pr
π

[|Reachable(Tx, π(x), π)| ≤ D].

By definition of SD, this gives

E
π

[|Guessed(F, α0, α
∗, π,D)|] ≤ SD · n

where, by Theorem 2.8, SD → S when D → ∞. So on average, when D → ∞, the ratio
of variables that need to be guessed converges to 38.63%, while the remaining 61.37% of the
variables are forced. This can be achieved by selecting D to be some function that grows slowly
in n, for instance D = log n. This still allows us to examine all G ⊆ F such that |G| ≤ D and
check for D-implications in subexponential time, and allows us to obtain Theorem 2.4.

The next sections aim at proving Theorem 2.8. For this, we will proceed in four high-level
steps.

13

1. We will prove a bound on a much simpler case: a totally symmetric infinite full binary tree
from which every node is deleted independently with a fixed probability p. This probability
p corresponds, in the PPSZ analysis, to the place of a given variable in the permutation.

2. We will then argue that if the tree is not infinite but finite, the bound still holds.

3. We will show that that bound also holds if we introduce dependencies between the nodes.

4. We will finally consider the case where p is not fixed anymore but the place of the root is
also random.

2.2.5 Random deletion in infinite binary trees

In this section, we consider the infinite rooted full binary tree T∞. Each non-root of T∞ is deleted
(along with its subtree) independently from all other nodes with probability p; this yields the
tree T ′.

We will prove a bound on the probability that the height of T ′, h(T ′), doesn’t exceed a given
d, by means of three lemmas. In the following sections, we will show that this bound still holds
if the conditions of the lemma are relaxed.

Lemma 2.9. Let T∞ be the infinite rooted full binary tree. Consider the following random
experiment: each non-root from T∞ is deleted (along with its subtree) independently from all
other nodes with probability p. Then the probability that the resultant tree T ′ is of finite size is

Pr[T ′ is finite] ≥ ζ(p)

where

ζ(p) =


p2

(1− p)2 if p <
1

2
1 otherwise

Proof. Let q = Pr[T ′ is finite]. For T ′ to be finite, then each of the root’s children must be
either deleted (which happens with probability p) or the root of a finite tree, considering that
we subject this infinite full binary tree to the same random experiment – and this happens with
probability q. Hence, the following holds:

q = (p+ (1− p) · q)2

This quadratic equation has two solutions,

q = 1 and q =
p2

(1− p)2

This proves that q is always at least the smaller of the two solutions, which establishes the
claim.

Let us now denote by h(T) the height of T , i.e. the length of the longest path from the root
downwards. For an infinite tree T , let h(T) =∞. We can prove the following lemma:

Lemma 2.10. Let T∞ be the infinite rooted full binary tree. Consider the following random
experiment: each non-root node from T∞ is deleted (along with its subtree) independently from
all other nodes with probability p. Then the probability that the resultant tree T ′ has height at
most d ≥ 1 converges as

lim
d→∞

Pr[h(T ′) ≤ d] = Pr[T ′ finite].

14

Proof. Let Bi be the event that there exists a path from the root to some node at depth i. We
first claim that ⋂

i≥1

Bi = {T ′ infinite}.

Suppose that an event A is contained in
⋂
i≥1Bi. This means that T ′ contains finite paths of

arbitrary length, and hence cannot be finite. Suppose that T ′ is finite. Then it contains paths
of arbitrary length, which is what we need for the other direction of the equality.

We obviously have that Bi ⊇ Bi+1 for all i ≥ 1 and we can then apply the monotone
convergence theorem (see Appendix A.2). It follows that

lim
d→∞

Bd = Pr[T ′ infinite].

Taking complements:

lim
d→∞

Pr[h(T ′) ≤ d] = lim
d→∞

B̄d = 1− lim
d→∞

Bd = 1− Pr[T ′ infinite] = Pr[T ′ finite].

Hence, we have
lim
d→∞

Pr[h(T ′) ≤ d] ≥ ζ(p).

Now, instead of using a limit in this statement, we want to introduce a sequence of errors
εi(p). We state this in the following lemma:

Lemma 2.11. There exists a sequence ε1(p), ε2(p), ... ∈ R+
0 of numbers depending only on p,

having εd(p) → 0 for d → ∞ such that the following holds. Let T∞ be the infinite full binary
tree. Let p ∈ [0, 1] be a fixed number, and consider the following random experiment: each
non-root node from T is deleted (along with its subtree) independently from all other nodes
with probability p.

Then the probability that the resultant tree T ′ has height at most d ≥ 1 satisfies

Pr[h(T ′) ≤ d] ≥ ζ(p)− εd(p).

Proof. Define, for all d ≥ 1,

εd := max{ζ(p)− Pr[h(T ′) ≤ d], 0}

Then we find that
Pr[h(T ′) ≤ d] ≥ ζ(p)− εd(p)

and, from Lemma 2.10,
lim
d→∞

εd(p) = 0

as required.

2.2.6 From infinite to finite trees

Let us now consider any finite (not necessarily full) binary tree. Consider the following random
experiment: each non-root node from T is deleted (along with its subtree) independently from
all other nodes with probability p.

We can couple this experiment to a random experiment conducted on T∞: T is embeddable
into T∞ with the two roots coinciding. If we delete every node from T∞ independently with

15

probability p, the same experiment is taking place on T . Let T ′′ be the tree resulting from the
deletions in T∞ and T ′ the tree resulting from the deletions in T . Since T ′ is a subtree of T ′′,
we have h(T ′) ≤ h(T ′′), and therefore

Pr[h(T ′) ≤ d] ≥ Pr[h(T ′′) ≤ d]

The lower bounds that we obtain in the case of infinite trees are hence also valid in the case
of finite, not necessarily full binary trees. Lemma 2.11 can consequently also be applied to finite,
not necessarily full binary trees.

It needs to be stressed here that, in particular, the convergence rate (the sequence of errors
εi) of the probability is independent of which tree T we consider, and only depends on p.

2.2.7 From independent to dependent labels

In the previous section, we’ve generalized Lemma 2.11 to take into account the fact that, in our
setting, the critical clause trees that we consider have a finite height and are not necessarily full.
The current version of Lemma 2.11 also requires that the nodes are deleted independently of all
other nodes. This is not the case in the result we are eventually after: in our case, dependencies
can occur, in that nodes of the trees are linked to one another and, if one of these linked vertices
is deleted, all of them are deleted. Conversely, if one of them is not deleted, then none of them is
directly deleted (although it can happen that it’s deleted following the deletion of a parent node
in the tree). In the critical clause tree setting, this corresponds to the fact that a given variable
can appear as var-label at several places in the tree, even though, from Observation 2.6, it can
appear only once in any path from the root to a leaf (the labelling is injective on these paths).

We generalize Lemma 2.11 again to obtain the following lemma:

Lemma 2.12. Let Z1, Z2, ..., Zr ∈ {0, 1} be mutually independent binary random variables,
each of which takes value 1 with probability p. Let T be any finite (and not necessarily full)
binary tree with a labelling σ : V (T)\{root} → {1, ..., r} of the non-root of T with indices
that have the property that, on each path from the root to a leaf, σ is injective. Consider the
experiment of drawing Z1, ..., Zr according to their distribution and then deleting all nodes u
from T (along with their subtrees) for which Zσ(u) = 1. Call the resulting tree T ′.

Juxtapose the experiment where in T , every non-root is deleted independently from all other
nodes with probability p. Call the random tree resulting from this experiment T ′′. Then for any
d,

Pr[h(T ′) ≤ d] ≥ Pr[h(T ′′) ≤ d] ≥ ζ(p)− εd(p).

Proof. The second inequality of the proof is a direct application of the finite version of Lemma 2.11.
Moreover, the statement is trivial if σ is globally injective, because in that case all the nodes

have independent labels and we are in the previous case.
Now we suppose that none of the duplicates are in an ancestor-descendant relation (injective-

ness on paths from root to a leaf), and we show that the correlations arising from these duplicate
labels cannot decrease this probability. For this, we will use the FKG inequality, which is stated
here and proven in Appendix A.3.

Theorem 2.13. LetA = {A1, A2, ..., Ar} be a collection of independent binary random variables
and E1 and E2 events which are determined by A and monotonically increasing in A. Then

Pr[E1 ∧ E2] ≥ Pr[E1] · Pr[E2].

We will use this theorem in the following proof, where we proceed by induction on d. For
d = 0, the statement is trivial (because both probabilities are 0, since the root is never deleted).

16

Let d > 0, and suppose that the statement holds for any depth strictly smaller than d. If
the root of T has no child, the statement is trivial, since both probabilities are 1. If the root of
T has only one child, then the statement is a direct consequence of the induction hypothesis, as
the whole tree has height d iff the unique subtree of the root has height d− 1.

Now suppose that the root of T has two children u and v. Let Tu be the subtree rooted at
u and let i = σ(u). Let T ′u denote the subtree of T ′ rooted at u and let T ′′u the subtree of T ′′

rooted at u (T ′ and T ′′ are empty trees if u is deleted). Let Tv, j, T
′
v, T

′′
v be the corresponding

objects for v. The injectiveness hypothesis on σ entails that no other node in Tu is labelled with
Zi, so whatever happens in the non-root nodes of Tu is independent of whether u itself is being
deleted or not. The same holds at v.

The event {h(T ′) ≤ d} can be defined as the conjunction of two similar events, one on each
subtree:

E1 = {Zi = 1 ∨ (Zi = 0 ∧ h(T ′u) ≤ d− 1)}
E2 = {Zj = 1 ∨ (Zj = 0 ∧ h(T ′v) ≤ d− 1)}

{h(T ′) ≤ d} = E1 ∧ E2

E1 and E2 are determined by {Z1, ..., Zr} and are monotonically increasing in those events
(because if one of the Zk goes from 0 to 1 then neither E1 nor E2 can go from 1 to 0). Therefore,
we can apply the FKG inequality to obtain that

Pr[h(T ′) ≤ d] = Pr[E1 ∧ E2] ≥ Pr[E1] · Pr[E2].

Since Tu is independent from Zi, we have that

Pr[E1] = Pr[Zi = 1] + Pr[Zi = 0] · Pr[h(T ′u) ≤ d− 1]

= p+ (1− p) · Pr[h(T ′u) ≤ d− 1],

and, by induction hypothesis,

Pr[E1] ≥ p+ (1− p) Pr[h(T ′′u) ≤ d− 1].

A similar statement holds for Pr[E2]. Combining these two statements, we get

Pr[h(T ′) ≤ d] ≥ (p+ (1− p) Pr[h(T ′′u) ≤ d− 1]) · (p+ (1− p) Pr[h(T ′′v) ≤ d− 1])

= Pr[h(T ′′) ≤ d].

2.2.8 Integrating over the place of the root

We are now ready to prove Theorem 2.8, which we recall here:

Theorem 2.8. For any ε > 0 there exists Dε ∈ N depending only on ε such that the following
holds. Let T be a finite binary tree and σ : V (T)→ {1, ..., r} a labelling of the nodes of T such
that on each path from the root to a leaf of T , σ is injective. Let X1, X2, ...Xr be real random
variables distributed uniformly from [0, 1] and mutually independently. Consider the experiment
of drawing X1, X2, ..., Xr according to their distribution and then deleting all nodes u from T
(along with the corresponding subtrees) for which Xσ(u) < Xσ(root).

Then the probability that the resultant tree T ′ contains more than Dε nodes is

Pr
X1,...,Xr

[|V (T ′)| > Dε] ≤ S + ε

17

where

S =
1

2
−
∫ 1

2

0

p2

(1− p)2 dp = 2 ln 2− 1 ≤ 0.3863

Proof. We fix ε, and we will, at the end of this proof, fix Dε appropriately so that the statement
holds.

Without loss of generality, suppose σ(root) = Xr. This value is independent of all the other
values used because the root is part of all paths and σ is injective on each path, so Xr doesn’t
occur a second time as a label.

Now we condition on Xr = γ for some fixed value γ ∈ [0, 1] and we consider, for 1 ≤ i ≤ r−1
the binary random variables

Zi =

{
1 if Xi < γ
0 otherwise

The variables {Z1, Z2, ..., Zr−1} are mutually independent binary random variables, each of
which takes value 1 with probability exactly γ. This is exactly the situation of Lemma 2.12, and
so we can use this result to conclude that

Pr[h(T ′) ≤ d | Xr = γ] ≥ ζ(γ)− εd(γ)

To convert this conditional into an unconditional probability, we invoke the law of total
probability, which, since Zr is uniformly distributed, reads

Pr[h(T ′) ≤ d] =

∫ 1

0

Pr[h(T ′) ≤ d | Xr = γ] dγ

Ideally, we’d be able to evaluate the limit of this integral as d → ∞ directly. However, the
rate of convergence of ε could depend on γ, which forbids us to invoke a uniform convergence
argument and hence to establish the convergence of the limit of the integral.

We may, however, circumvent the problem by approximating the integral by Riemann sums.
The following statement is proven in Appendix A.4:

Lemma 2.14. Let φ : [0, 1]→ [0, 1] be a continuous and monotonically non-decreasing function.
Then for any N ≥ 1,

1

N

N−1∑
i=0

ϕ

(
1

N

)
≤
∫ 1

0

ϕ(x) dx ≤ 1

N

N−1∑
i=0

ϕ

(
1

N

)
+

1

N

Now observe that Pr[h(T ′) ≤ d | Xr = γ] is continuous and non-decreasing as a function of
γ, so we can indeed apply this approximation. We obtain:

∫ 1

0

Pr[h(T ′) ≤ d | Xr = γ] dγ ≥
N−1∑
i=0

1

N
Pr

[
h(T ′) ≤ d

∣∣∣∣Xr =
i

N

]

≥
N−1∑
i=0

1

N
ζ

(
i

N

)
−
N−1∑
i=0

1

N
εd

(
i

N

)
Recall that

ζ(p) =


p2

(1− p)2 if p <
1

2
1 otherwise

18

Since ζ is also monotonically non-decreasing on [0, 1], we can apply the other inequality of
Lemma 2.14 and obtain that

Pr[h(T ′) ≤ d] ≥
∫ 1

0

ζ(x) dx− 1

N
−
N−1∑
i=0

1

N
εd

(
i

N

)
By defining

ψ(N, d) =
1

N
+

N−1∑
i=0

1

N
εd

(
i

N

)
we get that, for an arbitrary N ,

Pr[h(T ′) ≤ d] ≥
∫ 1

0

ζ(x) dx− ψ(N, d)

Note that the error term ψ(N, d) depends only on N and d and not on the choice of T ′.
Therefore, given ε > 0 as in Theorem 2.8, we can simply pick N = N(ε) which is large enough
such that 1/N < ε/2, and the pick d = d(ε,N) large enough such that εd(x) < ε/2 for all of the
N points x where the function is evaluated, yielding that φ(N, d) < ε and thus all possible trees
have a probability of having at most height d of at least S − ε. Since the trees are binary trees,
setting Dε > 2d(ε,N(ε))+1 concludes the proof of Theorem 2.8.

2.2.9 Summary

Let us summarize the salient points of the proof.

• We first related the probability of success (and hence the expected runtime) of the PPSZ
algorithm to the expected number of variables that are “guessed” by the PPSZ algorithm.

• We applied Jensen’s inequality be able to bound the probability of success by bounding
the probability that a given variable is forced.

• We related the fact that a variable is forced to the probability that a tree to which we
apply random cuts has a bounded size.

• We finally bounded said probability and proved that the bound converges, for large trees,
to the fixed value that we claimed. To achieve this, we

– computed said probability for a fixed root place and an infinite tree with independent
cuts,

– added the condition that the tree was not necessarily infinite,

– added the condition that the tree cuts were not necessarily independent of each other,

– integrated that result to get the final result for any variable, independently of its
place.

2.3 Multiple satisfying assignments

In the previous section, we’ve proven Theorem 2.4, which deals with the case where F has a
unique satisfying assignment. In general, though, we cannot rely on such a strong assumption,
and we would like to prove Theorem 2.2, which we re-state here:

19

Theorem 2.2. For any satisfiable (≤ 3)-CNF formula F on n variables V , ppsz(F, V, ∅, log n)
returns some satisfying assignment with probability Ω(1.3071−n).

Intuitively, it shouldn’t be harder to find a satisfying assignment when there are several of
them than when there is only one of them. The analysis of why it is indeed the case, however,
gets significantly more complicated in the general case than in the unique case. The original
analysis by Paturi et al. [4] gives worse bounds for multiple satisfying assignments than for a
unique satisfying assignment. The gap between both analyses was closed by Hertli [2] and it was
shown that the bound for unique SAT is indeed achievable for general SAT.

2.3.1 Problem assessment

The main reason why the analysis doesn’t go through like in the unique case is that there is no
guarantee that we can build critical clause trees for the formula. If a variable has assignments
that assign it to two different values, it can well happen that we cannot find clauses that allow
us to build the critical clause tree for that variable. In the extreme case, the empty formula has
no clause at all, so building trees in that case would definitely be a problem.

If, however, all the assignments for a given variable send that variable to the same value, it’s
easy to see that we can apply the exact same argument than in the unique case for that variable
and build a critical clause tree for that variable. In a way, the unique case is the multiple case
in which all variables are sent to a single value each.

We call these variables “frozen”, and we can infer the following lemma:

Lemma 2.15. Let F be a (≤ 3)-CNF formula and x be a frozen variable. Let furthermore α
be any satisfying assignment. Then Pr[x ∈ Guessed(F, α0, α, π,D)] ≤ SD, with SD defined as in
Theorem 2.8.

The proof of this lemma is exactly the same as the proof for the unique case; there is no
argument there that cannot be applied to the case of frozen variables.

On the other hand, the variables that are not frozen are not an issue for this step, because
we can set them either way and still stay satisfiable. We could then conclude that non-frozen
variables are not an issue, and we have a bound for the probability that a frozen variable is
guessed. We are, however, not done. The problem is that this bound on the probability depends
on the assignment, and that the assignment that is chosen depends highly on the random choice
over the non frozen variables. The analysis needs to take this into account, but the correlations
arising between the assignment towards which the PPSZ algorithm ends up steering and the
probabilities that variables are guessed make said analysis non trivial to say the least.

2.3.2 Proof idea

In Section 2.2, we proved that the probability that PPSZ returned the unique satisfying assign-
ment α∗ was bounded by

Pr
β,π

[ppsz returns α∗] ≥ 2−
∑
x∈U(α0) Prπ [x∈Guessed(F,α0,α

∗,π,D)]

and we proved that, for each of the n variables of the domain,

Pr
π

[x ∈ Guessed(F, α0, α
∗, π,D)] ≤ SD

which in turn allowed us to bound

Pr
β,π

[ppsz returns α∗] ≥ 2−SDn

20

Now we want to bound the probability that PPSZ returns some satisfying assignment, and
we would like the bounds to, at least, match. So, ideally, we want to write that

Pr
β,π

[ppsz returns some satisfying assignment] ≥ 2−SDn

For the analysis, we will consider the different steps of the PPSZ algorithm. This is where
the parameter α0, corresponding to a partial assignment, really comes into play: we are going
to evaluate the probability that PPSZ completes the partial assignment α0 to any satisfying
assignment. Supposing that F [α0] is satisfiable (because if not, then PPSZ cannot return a
satisfying assignment), we want to write that

Pr
β,π

[ppsz(F, V, α0, D) returns some satisfying assignment] ≥ 2−SDn(α0).

One way to do this could be to find a function, say “cost”, that can be associated to each
variable such that cost(α0, x) ≤ SD for each variable x at any step α0 of the algorithm, and to

show that Prβ,π[ppsz(F, V, α0, D) returns any satisfying assignment] ≥ 2−
∑
x∈V (F) cost(α0,x).

Defining this function turns out to be the crucial point of the PPSZ analysis. The name “cost”
can become clearer if you think of this function as a “measure of badness” putting a numerical
value on the question “when setting this variable, how badly can things go with regard to the
completion of the algorithm?”.

This is what we will do in the following section, and we will eventually prove a lemma that
links this cost function to the probability that PPSZ outputs some satisfying assignment, namely
Lemma 2.19.

But first, we need to find a suitable cost function.

2.3.3 Definition of a cost function

Before we define the cost function itself, we need a few additional notations. For any formula F ,
we partition the variables into three categories:

vbl(F) = Vfo(F) ∪̇Vfr(F) ∪̇Vnf(F)

where

• Vnf(F) are the variables that are not frozen, i.e. the ones that can be assigned either way
keeping the formula satisfiable: Vnf(F) := {x ∈ vbl(F) | F 2 x}. We define the shorthand
Vnf(α0) = Vnf(F

[α0]).

• Vfo(F) are the variable that are currently forced: they are frozen (because they cannot
be forced otherwise), and they follow from F via D-implication, that is Vfo(F) := {x ∈
vbl(F) | F �D (x 6= 0) or F �D (x 6= 1)}. We define the shorthand Vfo(α0) = Vfo(F [α0]).

• Vfr(F) are the variables that are frozen, but not currently forced: they follow from F , but
D-implication is not enough to see it, that is Vfr(F) := {x ∈ vbl(F) | F � (x 6= 0) or F �
(x 6= 1), F 2D x}. We define the shorthand Vfr(α0) = Vfr(F

[α0]).

Moreover, we want to actually define the cost function with regard to α0, x and a given
assignment α as the cost of x when completing α0 to α. The reason for this is that the cost of
x may vary depending on which assignment the algorithm steers towards; and we want to be
able to take into account these correlations. Thus, we define the cost function that we study as
cost(α0, α, x).

Now we define the cost function itself, by distinguishing several cases.

21

• If x /∈ U(α0), then cost(α0, α, x) = 0: either x is already in α0, or it doesn’t exist in vbl(F),
but in any case it has no influence on the cost of completing α0 to α.

• If α0 and α are incompatible, then cost(α0, α, x) = 0. This corresponds to the intuitive
notion that if α0 and α are incompatible, then PPSZ is already doomed to fail in completing
α0 to α, so whatever we do with x won’t hurt that.

• If α is not a satisfying assignment of F , then cost(α0, α, x) = 0, because PPSZ will never
return α, so we don’t need to bother with the cost of completing α0 to α.

• If x ∈ Vfo(α0), then we also define cost(α0, α, x) to be 0: since x is forced, then it will not
be a problem, and will be set correctly by PPSZ.

• If x ∈ Vfr(α0), then we define cost(α0, α, x) = Pr[x ∈ Guessed(F, α0, α, π,D)]. This case
is the main reason why we have to distinguish the different values for the final assignment.
Intuitively, this corresponds to the probability that something “bad” can happen with
regard to outputting the assignment α: if the variable is guessed, then, since it is frozen,
we have one chance out of two to end up in an unsatisfiable state when processing it.

• The case x ∈ Vnf(α0) is the hardest to justify intuitively. Since the variable is not frozen,
it will be set randomly, but we cannot end up in a situation where the formula becomes
unsatisfiable. However, the way we choose the variable can make the satisfiability more
“difficult”. If there exists a large number of satisfying assignments with x = 0 but only one
with x = 1, then the choice of x may have an impact on the overall success probability. We
don’t know exactly what happens here; but we know that we want the cost for a variable
to be less than SD. Moreover, the idea behind the cost function is that it doesn’t increase
when we assign new variables. Since a non-frozen variable can become frozen, but not the
other way around, it is somewhat logical to try to choose cost(α0, α, x) = SD, and hope
that everything works out with this value in the analysis3.

Now we need to relate this cost function for individual assignments to a cost function that
encompasses all of them – and hence the cost, for a given formula and a given initial assignment,
to get a satisfying assignment.

To understand why we define that cost function as we do, suppose for an instant that the cost
function cost(α0, α, x) is exactly the probability that something goes wrong (for some definition
of wrong that we won’t make explicit here) when processing x, considering that we want to
complete α0 to α. We can also see it as the probability that something goes wrong, knowing
that the algorithm steers towards α. If we define cost(α0, x) as the probability that something
goes wrong, regardless of which assignment we steer towards, by the law of total probability, we
get:

cost(α0, x) =
∑

α∈{0,1}V
cost(α0, α, x) · Pr[ppsz(F, V, α0, D) steers towards α].

Let us stress that while the “intuitive” explanations can give a sense of why and how we
defined this cost function, they can only be seen as an approximate meaning of the formal
definition of the cost function. The fact that Lemma 2.19 holds is solely due to the formal
definition of the cost function and of its analysis, and does not rely on these justifications.

Let us now recapitulate the cost function for a given assignment and properly define the cost
function for all assignments.

Definition 2.16. Let α0 be a partial and α be a total assignment and let x ∈ V be any variable.
We define the cost of x when completing α0 to α, in writing cost(α0, α, x) as follows:

3Spoiler: it does.

22

• If x /∈ U(α0), then cost(α0, α, x) = 0.

• If α0 and α are incompatible, i.e. ∃y : {α0(y), α(y)} = {0, 1}, then cost(α0, α, x) = 0.

• If α does not satisfy F , then cost(α0, α, x) = 0.

• Else:

– If x ∈ Vfo(α0), then cost(α0, α, x) = 0.

– If x ∈ Vfr(α0), then

cost(α0, α, x) = Pr
π

[x ∈ Guessed(F, α0, α, π,D)].

– If x ∈ Vnf(α0), then cost(α0, α, x) = SD.

To define cost(α0, x), we first define the likelihood of an assignment as follows.

Definition 2.17. Let F [α0] be satisfiable and let Sα0
be the set of value assignments l = {x 7→ b}

such that x ∈ U(α0) and F [α0[l]] is satisfiable.
We define the random process AssignSL(F, α0) that produces an assignment on vbl(F) as

follows. Start with the assignment α0, and repeat the following step until vbl(F [α0]) = ∅: Choose
a value assignment l ∈ Sα0

uniformly at random and add l to α0. At the end, output α0.
Let α be a total assignment on vbl(F). Then the likelihood of completing α0 to α, in writing

lkhd(α0, α) is defined as the probability that AssignSL(F, α0) returns α. For completeness, if
F [α0] is not satisfiable, we define lkhd(α0, α) = 0.

Observe that, in the SAT case (this will not be the case in the ClSP sections), the likelihood
of completing α0 to α is the probability that ppsz(F, V, α0, D) for D = |F | outputs α (this can be
seen by checking that the probability distribution is the same, by considering a case distinction
on whether the variables are frozen or non-frozen).

Also observe that if α0 and α are incompatible or if α doesn’t satisfy F , then lkhd(α0, α) = 0.
We now define cost(α0, x):

Definition 2.18. Let α0 be a partial assignment over V . The cost x when completing α0 to any
satisfying assignment, in writing cost(α0, x), is defined as

cost(α0, x) =
∑

α∈{0,1}V
lkhd(α0, α) · cost(α0, α, x).

We call the lkhd(α0, α) ·cost(α0, α, x) term in the sum the weighted cost of x when completing
α0 to α, in writing

wcost(α0, α, x) = lkhd(α0, α) · cost(α0, α, x).

Finally, we define the total cost of completing α0 to any satisfying assignment by summing
the costs over all possible variables:

cost(α0) =
∑
x∈V

cost(α0, x).

We can finally state the following lemma:

Lemma 2.19. Let α0 such that F [α0] is satisfiable. Then the overall probability of PPSZ to
output some satisfying assignment when starting in state α0 is at least 2−cost(α0).

23

Also observe the following:

Observation 2.20. For any α0, α, x, we have cost(α0, α, x) ≤ SD. Furthermore, cost(α0) ≤
SDn(α0).

Proof. The statement follows directly from the definition of the cost and from Lemma 2.15.

Consequently, proving Lemma 2.19 allows us to conclude directly that Theorem 2.2 holds as
well and we are done.

2.3.4 Proving Lemma 2.19

The proof of Lemma 2.19 will keep us occupied for quite some time, and we will need to take
quite a few detours along the road.

Setup of the proof of Lemma 2.19

We first define p(α0) as the probability that PPSZ outputs some satisfying assignment when
starting from state α0.

Also recall that the set Sα0 is defined as follows:

Sα0 := {(x, b) ∈ U(α0)× {0, 1} | F [α0∪{x 7→b}] is satisfiable}

This set represents all the choices that the PPSZ run can make and still have a satisfying
formula in the next step. The set Sα0 contains 2 · |Vnf(α0)|+ |Vfo(α0)|+ |Vfr(α0)| elements.

The proof itself is a proof by induction. We suppose that the claim holds for all α0 that fix
a larger number of variables. If α0 is total, then the statement holds trivially, because the cost
of α0 is 0, and p(α0) = 1.

Let x and b be random variables: x ∈ U(α0) u.a.r, and b is the forced value by D-implication
if x ∈ Vfo(α0), and u.a.r. otherwise.

We have:
p(α0) = E

x∈u.a.rU(α0);b
[p(α0 ∪ {x 7→ b})]

Since, if (x, b) /∈ Sα0
, then by definition of Sα0

, p(α0 ∪ {x 7→ b}) = 0, we have that

p(α0) = Pr[(x, b) ∈ Sα0
] · E
x∈u.a.rU(α0);b

[p(α0 ∪ {x 7→ b}) | (x, b) ∈ Sα0
]

(x, b) is in Sα0 if:

• x ∈ Vnf, because then both (x, 0) and (x, 1) are in Sα0
;

• x ∈ Vfr, and b has the correct value: x is not forced, so b is chosen at random in {0, 1},
but Sα0

contains only one of these values because x is frozen;

• x ∈ Vfo, because x is forced, so b is not chosen at random but gets assigned its proper
value, and Sα0 contains (x, b).

24

Hence, the probability that (x, b) ∈ Sα0
is:

Pr[(x, b) ∈ Sα0] = Pr[x ∈ Vnf] + Pr[x ∈ Vfo] +
1

2
Pr[x ∈ Vfr]

=
|Vnf(α0)|
n(α0)

+
|Vfo(α0)|
n(α0)

+
|Vfr(α0)|
2n(α0)

=
2|Vnf(α0)|+ 2|Vfo(α0)|+ |Vfr(α0)|

2n(α0)

=
|Sα0
|+ |Vfo(α0)|
2n(α0)

Hence, our working expression becomes:

p(α0) =
|Sα0
|+ |Vfo(α0)|
2n(α0)

E
x∈u.a.rU(α0);b

[p(α0 ∪ {x 7→ b}) | (x, b) ∈ Sα0
] . (2.5)

Relating to uniform choice over Sα0

Equation 2.5 is somewhat cumbersome to work with, because the choice of (x, b) is not made
uniformly at random: we first choose x, and then we choose b. It turns out that this makes
the expression significantly harder to work with, and that it’s much easier to consider a random
choice over Sα0 .

Luckily, it’s fairly easy to relate both probability distributions. The different cases are sum-
marized in the following table. Consider the event “a given (x, b) is chosen next in the process”;
we look at the probabilities of said event within both distributions (observe that (x, b) always
belongs to Sα0 if x ∈ Vnf(α0)).

x ∈ Vfo(α0) x ∈ Vfr(α0) x ∈ Vnf(α0)

(x, b) /∈ Sα0
(x, b) ∈ Sα0

(x, b) /∈ Sα0
(x, b) ∈ Sα0

(x, b) /∈ Sα0
(x, b) ∈ Sα0

x, then b 0
1

n(α0)

1

n(α0)
· 1

2

1

n(α0)
· 1

2
− 1

n(α0)
· 1

2

u.a.r in Sα0
0

1

|Sα0 |
0

1

|Sα0 |
− 1

|Sα0 |
We actually don’t care what happens when (x, b) /∈ Sα0 , because then the corresponding

term in the expectation will be 0 anyway. The weight of variables in Vfo(α0) is twice the weight
of the other variables; we define

w(x, b) :=

{
2 if x ∈ Vfo(α0)
1 otherwise

If we change the expectation of equation (2.5) to (X,B) ∈ Sα0
u.a.r., each (X,B) ∈ Sα0

now
has weight w(X,B). We still have to normalize the weight: the probability distribution must
sum to one. Let W be the normalization factor:∑

(x′,b′)∈Sα0

Pr[(x′, b′) 7→ (X,B)] = W ·
∑

(X,B)∈Sα0

w(X,B) · 1

|Sα0 |

= W · |Sα0
|+ |Vfo(α0)|
|Sα0 |

25

So the normalization factor is W · |Sα0
|

|Sα0
|+|Vfo(α0)| , which in turns allows us to write:

p(α0) =
|Sα0
|+ |Vfo(α0)|
2n(α0)

E
(X,B)∈u.a.r.Sα0

[|Sα0
|

|Sα0 |+ |Vfo(α0)|w(X,B)p(α0 ∪ {X 7→ B})
]

=
|Sα0 |

2n(α0)
E

(X,B)∈u.a.r.Sα0

[w(X,B)p(α0 ∪ {X 7→ B})] .

Using the induction hypothesis

We have now expressed p(α0) in terms of an expectation that depends on the uniform choice
over the possible litterals of F [α0]. From now on, we will omit in this proof the (X,B) ∈u.a.r. Sα0

for ease of notation and reading.
We first use Jensen’s inequality, so that we get expressions with which we can work. This

yields:

p(α0) ≥ 2
log
(
|S|

2n(α0)

)
2E[log(w(X,B)p(α0∪{X 7→B})]

= 2
log
(
|S|

2n(α0)

)
2E[log(w(X,B))]−E[− log(p(α0∪{X 7→B}))]

by linearity of expectation.
Since log(1) = 0 and log(2) = 1, we have exactly that

E[log(w(X,B))] = Pr[w(X,B) = 2] = Pr[x ∈ Vfo(α0)] =
|Vfo(α0)|
|Sα0
|

Moreover, we can now apply the induction hypothesis, which states that

p(α0 ∪ {X 7→ B}) ≥ 2−cost(α0∪{X 7→B})

to state that
E[− log(p(α0 ∪ {X 7→ B}))] ≤ E[cost(α0 ∪ {X 7→ B})]

Putting everything together, we obtain:

p(α0) ≥ 2
log
(
|S|

2n(α0)

)
+
|Vfo(α0)|
|Sα0

| −E[cost(α∪{X 7→B})] (2.6)

Now the only thing that we need to evaluate is E[cost(α0 ∪ {X 7→ B})]. To do this, we will
first need to establish a few facts about cost and likelihood.

Proving facts about cost and likelihood

We can gather the facts that we want to establish in a lemma:

Lemma 2.21. Let α0 and α be fixed and compatible. For any fixed variable x ∈ U(α0), if we
set x according to α, then

(i) the likelihood of α can only increase, i.e.

lkhd(α0 ∪ {x 7→ α(x)}, α) ≥ lkhd(α0, α)

with equality if x is frozen in F [α0].

26

(ii) the cost of a fixed variable y ∈ V w.r.t. α can only decrease, i.e.

cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y)

When choosing x ∈ U(α0) uniformly at random and setting it according to α, then

(iii) the likelihood of α increases on average as

E[lkhd(α0 ∪ {x 7→ α(x)}, α)] =

(
1 +
|Vnf(α0)|
n(α0)

)
lkhd(α0, α)

(iv) the cost of a fixed, frozen, non forced variable y ∈ Vfr(α0) decreases on expectation as

E[cost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ cost(α0, α, y)− 1

n(α0)

Proof. (i) We have observed that lkhd(α0, α) = E[ppsz(F, V, α0, |F |) = α]. Assume for the
moment that the permutation π is fixed. To output α, every non-frozen variable that
PPSZ encounters has to be set to the right value, which happens with probability 1/2. If
D = |F |, all frozen variables are automatically forced. Hence, for a fixed π, lkhd(α0, α)
is 2−nf(π,α0,α), where nf(π, α0, α) denotes the number of non-frozen variables encountered.
Therefore we have

lkhd(α0, α) = E
π

[2−nf(π,α0,α)].

Moving x to the beginning in π can only decrease the number of non-frozen variables.
Furthermore, if x is frozen in F [α0], the number of non-frozen variables remains the same.

Now observe that if we remove x from π, the resulting permutation π′ has a uniform
distribution from permutations over U(α0)\{x}. The number of non-frozen variables can
only decrease in U(α0)\{x}; removal of x might decrease this even further. Therefore

E
π

[2−nf(π,α0,α)] ≤ E
π′

[2−nf(α0∪{x 7→α(x))},α)],

with equality if x is frozen, as in this case x is always assigned α(x). The latter term is
equal to lkhd(α0 ∪ {x 7→ α(x)}, α), and we are done.

(ii) We consider the three cases of Definition 2.16. Note that if x = y, the statement holds
trivially.

If y ∈ Vnf(α0), then cost(α0, α, y) = SD. Since, by Observation 2.20, the cost of a variable
is always less than SD, the statement holds.

If y ∈ Vfr(α0) or y ∈ Vfo(α0), then cost(α0, α, y) is the probability that y is guessed in
the remainder of PPSZ. If we now fix another variable x to α(x), then this probability
cannot decrease, because adding a value assignment cannot ”un-force” another variable.
So cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y).

(iii) We have

lkhd(α0, α) =
∑

(x,c)∈Sα0

1

|Sα0 |
lkhd(α0 ∪ {x 7→ c}, α)

=
∑

x∈U(α0)

1

|Sα0
| lkhd(α0 ∪ {x 7→ α(x)}, α)

=
n(α0)

|Sα0
| E
x∈u.a.rU(α0)

[lkhd(α0 ∪ {x 7→ α(x)}, α)],

27

which proves the statement, since |Sα0
| = 2|Vnf(α0)| + |Vfr(α0)| + |Vfo(α0)| = n(α0) +

|Vnf(α0)|.

(iv) The statement tells us that the probability that y is guessed is reduced by 1/n(α0) after
one step. This is because with probability 1/n(α0), y comes next in π and is guessed
now (since it is not forced now). This 1/n(α0) is counted in cost(α0, α, y) but not in
E[cost(α0 ∪ {x 7→ α(x)}, α, y)].

Evaluating E[cost(α0 ∪ {X 7→ B})]
In this section, we will prove the following lemma:

Lemma 2.22. If (X,B) ∈ Sα0 is selected uniformly at random, then

E[cost(α0 ∪ {X 7→ B})] ≤ cost(α0)− |Vfr(α0)|
|Sα0
| −

2SD · |Vnf(α0)|
|Sα0
|

To prove this lemma, we will need the following auxilliary lemma:

Lemma 2.23. Let α be a fixed satisfying assignment and α0 ⊆ α. Let y ∈ Vfr(α0) be a fixed
frozen variable. If we select x ∈ U(α0) uniformly at random and assign it according to α, then

E[wcost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ wcost(α0, α, y) · Sα0

n(α0)
− lkhd(α0, α)

n(α0)

Proof. We use the following correlation inequality, proven in Appendix B.2.1:

Lemma 2.24. Let A,B ∈ R be random variables and a, b, ā, b̄ ∈ R fixed numbers such that
A ≥ a and B ≤ b always, and E[A] = ā and E[B] = b̄. Then

E[A ·B] ≤ ab̄+ bā− ab.

To apply that lemma, we recall that wcost(α0 ∪ {x 7→ α(x)}, α, y) = lkhd(α0 ∪ {x 7→ α(x)},
α)·cost(α0∪{x 7→ α(x)}, α, y), so we defineA = lkhd(α0∪{x 7→ α(x)}, α) andB = cost(α0∪{x 7→
α(x)}, α, y). Recall that, in Lemma 2.21, we have proven the following facts:

• For any fixed variable x ∈ U(α0), if we set x according to α, then lkhd(α0 ∪ {x 7→ α(x)},
α) ≥ lkhd(α0, α) and cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y).

• When choosing x ∈ U(α0) u.a.r. and setting it according to α, the likelihood of α becomes,
on average

E[lkhd(α0 ∪ {x 7→ α(x)})] =

(
1 +
|Vnf(α0)|
n(α0)

)
lkhd(α0, α),

and the cost of a fixed variable y ∈ Vfr(α0) becomes, on average,

E[cost(α ∪ {x 7→ α(x)}, α, y)] = cost(α0, α, y)− 1

n(α0)
.

With these results, we can set, in Lemma 2.24, a = lkhd(α0, α), ā =
(

1 + |Vnf(α0)|
n(α0)

)
lkhd(α0,

α), b = cost(α0, α, y) and b̄ = cost(α0, α, y) − 1
n(α0)

. Applying our correlation inequality, we

28

deduce that, for y ∈ Vfr(α0), when selecting x ∈ U(α0) uniformly at random and assigning it
according to α, we have

E[wcost(α0 ∪ {x 7→ α(x)}, α, y)]

≤ ab̄+ bā− ab

= lkhd(α0, α)

(
cost(α0, α, y)− 1

n(α0)

)
+ cost(α0, α, y)

(
1 +
|Vnf(α0)

n(α0)

)
lkhd(α0, α)

− lkhd(α0)cost(α0, α, y)

= wcost(α0, α, y)

(
1 +
|Vnf(α0)

n(α0)

)
− lkhd(α0, α)

n(α0)

= wcost(α0, α, y) · |Sα0 |
n(α0)

− lkhd(α0, α)

n(α0)
.

We can now prove Lemma 2.22.

Proof of Lemma 2.22. We analyze the cost decrease contribution of the different types of vari-
ables separately. Each variable forced in state α0 contributes zero cost both before and after the
step.

For a non-frozen variable y ∈ Vnf(α0), note that Sα0 features two pairs containing y, in
contrast to the other types of variables of which Sα0

features only one pair each. This means
that with probability 2|Vnf(α0)|/|Sα0

|, a pair featuring y is selected. In that case, the cost
contribution of y drops from SD to zero in all assigments. No matter what happens to these
costs otherwise (they can certainly not increase by definition), the non-frozen variables hence
contribute the last term of the claimed inequality.

Now consider the frozen variables. If we fix some satisfying and α0-compatible assigment
α ∈ {0, 1}V , and condition the experiment on the event that α(X) = B, then X becomes
uniformly at random among U(α0) because Sα0

contains exactly one pair (x′, b′) per variable
x′ ∈ U(α0) such that α(x′) = b′. Now we can directly apply Lemma 2.23 to find that, conditioning
on α(X) = B, the cost of each frozen variable drops on average as:

E[wcost(α0 ∪ {X 7→ B}, α, y) | α(X) = B] ≤ wcost(α0, α, y) · |Sα0
|

n(α0)
− lkhd(α0, α)

n(α0)
.

The condition itself is satisfied with probability n(α0)/|Sα0
|. If it does not apply, then the cost

contribution of α drops to zero altogether. Therefore, the unconditional change can be obtained
by multiplying the right-hand side by n(α0)/|Sα0 |, which then yields

E[wcost(α0 ∪ {X 7→ B}, α, y)] ≤ wcost(α0, α, y)− lkhd(α0, α)

|Sα0 |
.

If we sum over all assignments α ∈ {0, 1}V , the claim follows.

Putting everything together

We are back to the main track of the proof of Lemma 2.19, and we can now introduce the result
from Lemma 2.22 into equation (2.6). We obtain:

p(α0) ≥ 2
log
(|Sα0

|
2n(α0)

)
+
|Vfo(α0)|
|Sα0

| −cost(α0)+
|Vfr(α0)|
|Sα0

| +
2SD·|Vnf(α0)|

|Sα0
|

29

Since we want to show that p(α0) ≥ 2−cost(α0), we need to show that:

log

(|Sα0 |
2n(α0)

)
+
|Vfo(α0)|
|Sα0
| +

|Vfr(α0)|
|Sα0
| +

2SD · |Vnf(α0)|
|Sα0
| ≥ 0.

We write

log

(|Sα0
|

2n(α0)

)
= −1 + log

(|Sα0
|

n(α0)

)
= −1 + log

(|Vfr(α0)|+ |Vfo(α0)|+ 2|Vnf(α0)|
n(α0)

)
= −1 + log

(
1 +
|Vnf(α0)|
n(α0)

)
We now use an inequality about logarithms, namely that for x ≥ 0,

log(1 + x) ≥ log(e)
x

1 + x

This inequality is proven in Appendix B.1.1.
This yields:

log

(|Sα0
|

2n(α0)

)
≥ −1 + log(e)

|Vnf(α0)|
n(α0)

1 + |Vnf(α0)|
n(α0)

= −1 + log(e) +
|Vnf(α0)|

n(α0) + |Vnf(α0)|

= −1 + log(e)
|Vnf(α0)|
|Sα0
|

Inserting this into the inequality, we get:

−1 + log(e)
|Vnf(α0)|
|Sα0
| +

|Vfo(α0)|
|Sα0
| +

|Vfr(α0)|
|Sα0
| +

2SD · |Vnf(α0)|
|Sα0
| ≥ 0

⇔ −|Sα0
|+ log(e)|Vnf(α0)|+ |Vfo(α0)|+ |Vfr(α0)|+ 2SD · |Vnf(α0)| ≥ 0

Since log(e) + 2SD > 1.44 + 2 · 0.38 > 2, the left hand side of the inequality is at least 0 as
Sα0

= 2|Vnf(α0)|+ |Vfo(α0)|+ |Vfr(α0)| and we are done proving Lemma 2.19.

2.4 Summary

To prove Theorem 2.2, we went through the following steps:

1. We first proved Theorem 2.4, which makes the analysis of the algorithm somewhat easier
by considering a single satisfying assignment.

2. We used the bound obtained in this analysis to define a cost function for

• variables in an assignment,

• a single assignment,

• and the formula itself.

30

3. By definition, this cost is bounded by the value that we need to establish the same bound
on the runtime of PPSZ as in the unique case.

4. We proved that, indeed, the probability that PPSZ returns any satisfying assignment is at
least 2−cost(F), where cost(F) is the cost of returning a satisfying assignment when starting
with an empty assignment.

31

Chapter 3

A weak version of PPSZ for
(d, k)-ClSP

We have seen in Chapter 2 how to prove running time bounds for the PPSZ algorithm applied
on 3-SAT formulas. We have introduced in Chapter 1 the notion of ClSP formulas, which can
be seen as an extension of SAT formulas: the only thing that changes is the domain over which
the variables are defined. In the following two chapters, we will extend PPSZ and its analysis to
get bounds for the runtime of PPSZ for (d, k)-ClSP formulas.

The results presented in the following two chapters have been developed by Szedlák [7] for
the unique case and Millius [3] for the general case; these chapters are heavily based on these
two theses.

In this chapter, we will focus on a “weak” version of the PPSZ algorithm (we’ll see in what
sense in Section 3.1); next chapter is devoted to a “strong” version of the algorithm that has
better results than the “weak” version. We still present the weak version for two reasons. The
first is that the analysis is somewhat simpler than the strong version – in a sense, it can serve
as a warm-up for the strong version. The second reason is that the analysis itself is, at the time
of this write-up, more complete for the weak version than for the strong version. In the case of
the weak version, Millius [3] has been able to prove that the general case bound is at least as
good as the unique case bound. In the case of the strong version, no such proof has been fully
established yet, although it is our belief that it is indeed feasible.

3.1 The algorithm

In this chapter, we will consider the following algorithm for (d, k)-ClSP formulas.

ppsz-weak(F, V, α0, D)

π ← a permutation of U(α0) chosen u.a.r.;
β ← an assignment from [d]U(α0) chosen u.a.r.;
return ppsz-weak(F, V, α0, D, π, β);

32

ppsz-weak(F, V, α0, D, π, β)

αprog ← α0;
for i← 1 to n(α0)

do
x← xπi
if there exists c ∈ {1, ..., d} such that ∀c′ 6= c, F [αprog] �D (x 6= c′)

then αprog(x)← c
else αprog(x)← β(x);

if αprog satisfies F
then return αprog;
else return ’failure’;

The reader may have spotted an obvious improvement to this algorithm. In this algorithm,
we choose values u.a.r. among all the values of the domain, i.e. [d], when there is no “forced”
value. However, it may be that some values of [d] can already be excluded when looking at
D clauses. Intuitively, reducing the choice domain at each step to consider only the allowed
values can only increase the probability of returning a satisfying assignment, because with some
positive probability this algorithm will make a value assignment it “knows” to be forbidden.

This is exactly the sense in which the algorithm that we present here is “weak”. We will
consider the suggested improvement in the next chapter.

We will follow the same structure for this algorithm as we did for the 3-SAT case: we will
first prove a theorem concerning the unique case, and we will then show that the considered
bound holds for the general case.

The probabilities and runtimes that we achieve to prove here depend on d and k; we define
the constant S(d,k) to encompass this dependency:

S(d,k) =

∫ 1

0

t
1

(d−1)(k−1) − t
1− t dt

We will prove the following theorem.

Theorem 3.1. For any satisfiable (d, k)-ClSP formula F on n variables V , ppsz-weak(F, V,
α0, log log n) returns some satisfying assignment with probability Ω(d−S(d,k)n−o(n)).

This theorem imply the following:

Corollary 3.2. There exists a randomized algorithm for (d, k)-ClSP with one-sided error that
runs in time O(dS(d,k)n+o(n)).

As we did in the 3-SAT case, we will first prove a weaker version of this theorem and consider
first the case of a unique satisfying assignment.

Theorem 3.3. For any (d, k)-ClSP formula F on n variables V which has a unique sat-
isfying assignment, ppsz-weak(F, V, α0, log log n) returns this assignment with probability
Ω(d−S(d,k)n−o(n)).

3.2 Unique satisfying assignment

In this section, we consider that the formula F has a unique satisfying assignment α∗. Without
loss of generality, we suppose that this satisfying assignment is the all-d assigment, i.e. α∗ = (d,
d, ..., d). In this section, we can also assume that α0 = ∅, U(α0) = V and n(α0) = n.

33

3.2.1 Forced and guessed variables

We extend the notion of forced and guessed variables defined in Chapter 2 so that it can be used
for the ClSP case.

Definition 3.4. Let F be a (d, k)-ClSP formula over n variables, α∗ a satisfying assignment,
α0 a partial assignment that is compatible with α∗, π = x1, ..., xn(α0) a permutation of U(α0)
and D ≥ 0. A variable xi is called forced with respect to F , α0, α∗, π and D if there exists
c ∈ [d] such that for all c′ ∈ [d], c′ 6= c, F [α0∪x1 7→α∗(x1),x2 7→α∗(x2),...,xi−1 7→α∗(xi−1)] D-implies the
literal (x 6= c′). Otherwise, the variable is called guessed. We denote the set of forced (guessed)
variables within U(α0) by Forced(F, α0, α

∗, π,D) (Guessed(F, α0, α
∗, π,D)).

Observe that ppsz-weak(F, V, α0, D, π, β) returns the satisfying assignment α∗ if and only
if β(x) = α∗(x) for all x ∈ Guessed(F, α0, α

∗, π,D).
From this observation, we can write:

Pr
β,π

[ppsz-weak returns α∗] = E
π

[
d−|Guessed(F,α0,α

∗,π,D)|
]
.

We apply Jensen’s inequality (see Appendix A.1) with the convex function x 7→ d−x and we
obtain

Pr
β,π

[ppsz-weak returns α∗] ≥ d−Eπ [|Guessed(F,α0,α
∗,π,D)|].

By linearity of expectation, we can write that

E
π

[|Guessed(F, α0, α
∗, π,D)|] =

∑
x∈U(α0)

Pr
π

[x ∈ Guessed(F, α0, α
∗, π,D)]

= n(α0)−
∑

x∈U(α0)

Pr
π

[x ∈ Forced(F, α0, α
∗, π,D)]

3.2.2 Building critical clause trees

So far, the reasoning is exactly the same as in the 3-SAT case. The first main difference when
building critical clause trees. In the 3-SAT case, we had binary trees. Here, we are not restricting
k to 3 (which was the reason why the trees were binary), and we are considering domains that
have an arbitrary number of values, which will make the construction slightly more complicated.
The core reasoning stays the same as in the 3-SAT case, though.

We construct a collection of trees {Tx}x∈U(α0), each of them called a critical clause tree of x.
We consider a formula F that has a unique assignment α∗, and let α∗ be, without loss of

generality, the all-d assignment.

Definition 3.5. We call T a rooted tree with children into j directions if the following holds. T
is a tree with a designated root, root(T). The children of a vertex v are partitioned into j groups
which we denote Children1(v), Children2(v),..., Childrenj(v). Each child belongs to exactly one
group, i.e. Childreni(v) and Childrenk(v) are disjoint sets whenever i 6= k.

Tx is a rooted tree in (d − 1) direction, where every node u ∈ V (T) is labelled both with
a variable x ∈ V , which we denote by var-label(u), and a set of clauses C ∈ F [α0], denoted by
clause-label(u). Here is how Tx is built for a fixed x ∈ U(α0):

1. Start with Tx consisting of a single root. This root has variable label x, and an empty
clause label.

34

2. As long as there is a leaf u ∈ V (T) that has an empty clause label, do the following:

(a) Define W := {var-label(v) | v ∈ V (T) is an ancestor of u in T}, where ancestor in-
cludes u itself and the root.

(b) Let the path from the root to u be {y0, y1, y2, ..., ym, u} be such that var-label(y0) =
x, y1 ∈ Children`1(x), y2 ∈ Children`2(y1), ..., ym ∈ Children`m(ym−1), u ∈
Children`m+1

(ym). Then `1, ..., `m+1 are well-defined, and uniquely defined. We define
the partial assignment µ0 as follows:

µ0 : vbl(F)→ {0, 1},

 µ0(var-label(yi)) = `i+1 ∀i ∈ {0, ...,m}
µ0(z) = α∗(z) = d ∀z /∈ {var-label(y0), ...,

var-label(ym), var-label(u)}

(c) For j = 1 to d − 1, we define µj = µ0[var-label(v) 7→ j]. For each j, let Cj be a
constraint that is not satisfied by µj . Since µj is not compatible with α∗ and α∗ is
the unique satisfying assignment, such a clause exists. Add Cj to clause-label(u).

(d) For each literal (y 6= d) in Cj , add a node to Childrenj(v), which is var-labeled with
the variable the literal is over.

We denote the resulting tree by Tx. Note that Tx is not unique for a given x. We still consider
the collection {Tx}x∈U(α0) to be fixed from now on.

Any given node has at most (d− 1)(k − 1) children: for each j = 1 to d− 1, we add a group
of at most (k − 1) children: it cannot happen that a clause has k literals (y 6= d) because the
all-d assignment is a satisfying assignment.

Suppose v is an ancestor of u and var-label(v) = y. Since µ0(y) 6= d, it cannot happen
that clause-label(u) contains a clause that has a literal (y 6= d) (otherwise this clause would be
satisfied). Therefore:

Observation 3.6. In Tx, no node has the same var-label as one of its proper ancestors.

This also implies that the height of the tree cannot exceed n, and thus the process terminates,
making Tx well-defined.

3.2.3 Critical clause trees and forced variables

As in Section 2.2.4, we now consider π as a placement; the values π(x), called place of x, are
chosen independentely and uniformly at random from [0, 1] for each x ∈ U(α0).

Let γ ∈ [0, 1] and Tx be the critical clause tree for some fixed variable. We can use the same
definition as in Section 2.2.4 for reachable nodes: a node u ∈ Tx is reachable at time γ w.r.t. π
if there exists a path v0, v1, ..., vm such that v0 is the root of the tree, vm = u and π(vi) ≥ γ for
all 1 ≤ i ≤ m. Let us denote Reachable(Tx, γ, π) the set of all nodes in Tx reachable at time γ
w.r.t. π. Observe that this set is independent of the place of x.

A slightly adapted version of Lemma 2.7 can be proven:

Lemma 3.7. If we have |Reachable(Tx, π(x), π)| ≤ D, then it holds as well that x ∈ Forced(F,
α0, α, π, (d− 1)D).

Observe that these two lemmas are equivalent for d = 2.

Proof. Let α′ be the restriction of α∗ = (d, d, ..., d) to the variables y ∈ U(α0) with π(y) < π(x).
By definition, x is forced if there is a formula F ′ ⊆ F [α0∪α′] that implies all the literals (x 6= c)
for all c ∈ [d], c 6= d. Let G := clause-label(Reachable(Tx, π(x), π)), i.e. the subformula of F

35

consisting of the union of all the clause-labels sets of reachable nodes in Tx. Since by hypothesis
|Reachable(Tx, π(x), π)| ≤ D, and each node’s clause-label contains exactly (d− 1) clauses, then
clearly |G| ≤ (d− 1)D.

Suppose that there exists c such that G does not imply (x 6= c). Then we can fix an
assignment ν : V → [d] which is compatible with α0 ∪α′, which has ν(x) = c and which satisfies
G. Choose a maximal path in Tx, starting at the root, x, and containing only nodes v such that
ν(var-label(v)) 6= d, following the directions Childreni defined by ν. Since ν(x) = c, this path is
non-empty. Let u be its endpoint. Since ν is compatible with α∗ on all the variables before x, it
must be that var-label(u) is either x itself or after x, and hence π(var-label(u)) ≥ π(x), and so
u is reachable, by definition. For all children z of u, we have that ν(var-label(z)) = d (because
the path is maximal); all ancestors y of u are such that ν(var-label(y)) 6= d. By definition
of Tx, at least one clause-label of u is unsatisfied by ν and, since clause-label(u) ⊆ G, this is
contradiction.

It follows immediately from Lemma 3.7 that, over the uniform choice of π, we have

Pr
π

[x ∈ Forced(F, α0, α
∗, π,D)] ≥ Pr

π

[
|Reachable(Tx, π(x), π)]| ≤ D

d− 1

]
.

The same reasoning as in Section 2.2.4 can be applied here: we reduce the problem to a
probabilistic computation on trees: when sorting the nodes of a fixed (d− 1)(k − 1)-degree tree
according to a random permutation (some nodes have the same label and are prescribed to
get assigned the same place) and deleting all nodes whose place is after the root, what is the
probability that there will be at most D

d−1 nodes reachable?
We will, in the next section, prove the following theorem:

Theorem 3.8. For any ε > 0, there exists Dε ∈ N depending only on ε such that the following
holds. Let T be a finite tree of degree at most (d− 1)(k− 1) and σ : V (T)→ {1, ...r} a labelling
of the nodes of T such that on each path from the root to a leaf of T , σ is injective. Let X1, X2,
..., Xr be real random variables distributed uniformly from [0, 1] and mutually independently.
Consider the experiment of drawing X1, .X2, ..., Xr according to their distribution and then
deleting all nodes u from T (along with the corresponding subtrees) for which Xσ(u) ≤ Xσ(root).

Then the probability that the resultant tree T ′ contains more than Dε nodes is

Pr
X1,...,Xr

[|V (T ′)| > Dε] ≤ S(d,k) + ε

where

S(d,k) =

∫ 1

0

t
1

(d−1)(k−1) − t
1− t dt

The next sections aim at proving Theorem 3.8, and we will proceed in the same four high-level
steps as we did in the 3-SAT case:

1. We will prove a bound on a much simpler case: a full infinite tree of degree (d− 1)(k − 1)
from which every node is deleted independently with fixed probability p. This probability
p corresponds, in the PPSZ analysis, to the place of a given variable in the permutation.

2. We will then argue that if the tree is not infinite but finite, the bound still holds.

3. We will show that the bound also holds if we introduce dependencies between the nodes.

4. We will finally consider the case where p is not fixed anymore but the place of the root is
also random.

36

3.2.4 Random deletion in infinite and finite trees of degree (d−1)(k−1)
In this section, we consider the infinite rooted full tree T∞ of degree (d−1)(k−1). Each non-root
of T∞ is deleted (along with its subtree) independently from all other nodes with probability p;
this yields the tree T ′.

Let q = Pr[T ′ is finite]. For T ′ to be finite, each of the root’s children must be either deleted
(which happens with probability p), or the root of a finite tree, considering that we subject this
infinite full tree of degree (d−1)(k−1) to the same random experiment – and this happens with
probability q. Hence, the following holds:

q = (p+ (1− p) · q)(d−1)(k−1).

Let Rd,k(p) be the smallest q ≥ 0 that satisfies this equation. This is well-defined since the
equation is trivially satisfied for q = 1 and (p+ (1− p) · q)(d−1)(k−1) − q is polynomial in q.

This reasoning and this definition yield the following lemma:

Lemma 3.9. Let T∞ be the infinite rooted full tree of degree (d−1)(k−1). Consider the following
random experiment: each non-root from T∞ is deleted (along with its subtree) independently
from all other nodes with probability p. Then the probability that the resultant tree T ′ is of
finite size is

P [T ′ is finite] ≥ Rd,k(p)

where Rd,k(p) (which we will characterize later) is the smallest q greater or equal than 0 satisfying
the equation

q = (p+ (1− p) · q)(d−1)(k−1).

Observe that, since 1 is a solution of this equation, the probability is always valid.
We will prove the following lemma:

Lemma 3.10. Let T∞ be the infinite rooted tree of degree (d−1)(k−1). Consider the following
random experiment: each non-root node from T∞ is deleted (along with its subtree) indepen-
dently from all other nodes with probability p. Then the probability that the resultant tree T ′

has height at most H ≥ 1 converges as

lim
H→∞

Pr[h(T ′) ≤ H] = Pr[T ′ is finite].

The proof of this lemma is exactly the same as the proof of lemma Lemma 2.10 using the
monotone convergence theorem; the only difference between these lemmata is the degree of the
considered tree (binary tree vs. tree of degree (d− 1)(k − 1)).

Hence, we have
lim
H→∞

Pr[h(T ′) ≤ H] ≥ Rd,k(p).

Instead of using a limit in this statement, we introduce a sequence of errors εi(p). We state
this in the following lemma:

Lemma 3.11. There exists a sequence ε1(p), ε2(p), ... ∈ R+
0 of numbers depending only on p,

having εH(p) → 0 for H → ∞ such that the following holds. Let T∞ be the infinite full tree
of degree (d − 1)(k − 1). Let p ∈ [0, 1] be a fixed number, and consider the following random
experiment: each non-root node from T is deleted (along with its subtree) independently from
all other nodes with probability p. Then the probability that the resultant tree T ′ has height at
most H ≥ 1 satisfies

Pr[h(T ′) ≤ H] ≥ Rd,k(p)− εH(p).

37

Proof. Define, for all H ≥ 1,

εH := max{Rd,k(p)− Pr[h(T ′) ≤ d], 0}.

The we find that
Pr[h(T ′) ≤ H] ≥ Rd,k − εH(p)

and, from Lemma 3.10,
lim
H→∞

εH(p) = 0

as required.

The arguments of Section 2.2.6 can be applied directly to the infinite tree of degree (d −
1)(k − 1) to show that considering any finite (not necessarily full) trees of degree (d− 1)(k − 1)
does not hurt the bound from this section and that it can be applied to finite, not necessarily
full trees as well.

3.2.5 From independent to dependent labels

We generalize Lemma 3.11 again to obtain the following lemma:

Lemma 3.12. Let Z1, Z2, ..., Zr ∈ {0, 1} be mutually independent binary random variables,
each of which takes value 1 with probability p. Let T be any finite tree of degree ≤ (d−1)(k−1)
with a labelling σ : V (T)\{root} → {1, ..., r} of the non-root of T with indices that have the
property that, on each path from the root to a leaf, σ is injective. Consider the experiment of
drawing Z1, ..., Zr according to their distribution and then deleting all nodes u from T (along
with their subtrees) for which Zσ(u) = 1. Call the resulting tree T ′.

Juxtapose the experiment where in T , every non-root is deleted independently from all other
nodes with probability p. Call the random tree resulting from this experiment T ′′. Then for any
H,

Pr[h(T ′) ≤ H] ≥ Pr[h(T ′′) ≤ H] ≥ Rd,k(p)− εH(p).

Proof. The second inequality of the proof is a direct application of the finite version of Lemma 3.11.
Moreover, the statement is trivial if σ is globally injective, because in that case all the nodes

have independent labels and we are in the previous case.
Now we suppose that none of the duplicates are in an ancestor-descendant relation (injec-

tiveness on the paths from root to a leaf), and we show that the correlations arising from these
duplicate labels cannot increase this probability. For this, we will use the FKG inequality, which
we recall here and proven in Appendix A.3.

Theorem 2.13. LetA = {A1, A2, ..., Ar} be a collection of independent binary random variables
and E1 and E2 events which are determined by A and monotonically increasing in A. Then

Pr[E1 ∧ E2] ≥ Pr[E1] · Pr[E2].

We prove Lemma 3.12 by induction on H. For H = 0, the statement is trivial (because both
probabilities are 0, since the root is never deleted).

Let H > 0, and suppose that the statement holds for any depth strictly smaller than H. If
the root of T has no child, the statement is trivial, since both probabilities are 1. If the root of
T has only one child, then the statement is a direct consequence of the induction hypothesis, as
the whole tree has height H iff the unique subtree of the root has height H − 1.

Now suppose that the root of T has z children u1, u2, ...uz. For all i ∈ {1, ...z}, let Ti be the
subtree of T rooted at ui, T

′
i the subtree of T ′ rooted at ui and T ′′ be the subtree of T ′′ rooted

38

at ui (T ′i and T ′′i are empty trees if ui is deleted). The injectiveness hypothesis on σ entails that
no other node in Ti is labelled with Zσ(ui), so whatever happens in the non-root nodes of Ti is
independent of whether ui itself is being deleted or not.

The event {h(T ′) ≤ H} can be defined as the conjunction of z similar events, one on each
subtree: for all i, we define Ei as

Ei = {Zσ(ui) = 1 ∨ (Zσ(ui) = 0 ∧ h(T ′i) ≤ H − 1)}

and we have that

{h(t′) ≤ H} =

z∧
i=1

Ei.

Every Ei is determined by {Z1, ..., Zr} and are monotonically increasing in those events
(because if one of the Zk goes from 0 to 1 then no Ei can go from 1 to 0). A conjunction of
any number of these events will have the same property. Therefore, we can repeatedly apply the
FKG inequality:

Pr[h(T ′) ≤ H] = Pr[E1 ∧ E2 ∧ E3 ∧ ... ∧ Ez]
≥ Pr[E1] · Pr[E2 ∧ E3 ∧ ... ∧ Ez]
≥ Pr[E1] · Pr[E2] · Pr[E3 ∧ ... ∧ Ez]
≥ Pr[E1] · Pr[E2] · Pr[E3] · ... · Pr[Ez]

Since Ti is independent from Zσ(ui), we have that, for each Ei,

Pr[Ei] = Pr[Zσ(ui) = 1] + Pr[Zσ(ui) = 0] · Pr[h(T ′i) ≤ H − 1]

= p+ (1− p) Pr[h(T ′σ(ui)) ≤ H − 1]

and, by induction hypothesis,

Pr[Ei] ≥ p+ (1− p) Pr[h(T ′′i) ≤ h− 1].

Combining all of these yields

Pr[h(T ′) ≤ H] ≥
z∏
i=1

(p+ (1− p) Pr[h(T ′′i) ≤ H − 1])

= Pr[h(T ′′) ≤ H]

3.2.6 Integrating over the rank of the root

We are now ready to prove Theorem 3.8, which we recall here:

Theorem 3.8. For any ε > 0, there exists Dε ∈ N depending only on ε such that the following
holds. Let T be a finite tree of degree at most (d− 1)(k− 1) and σ : V (T)→ {1, ...r} a labelling
of the nodes of T such that on each path from the root to a leaf of T , σ is injective. Let X1, X2,
..., Xr be real random variables distributed uniformly from [0, 1] and mutually independently.
Consider the experiment of drawing X1, .X2, ..., Xr according to their distribution and then
deleting all nodes u from T (along with the corresponding subtrees) for which Xσ(u) ≤ Xσ(root).

Then the probability that the resultant tree T ′ contains more than Dε nodes is

Pr
X1,...,Xr

[|V (T ′)| > Dε] ≤ S(d,k) + ε

39

where

S(d,k) =

∫ 1

0

t
1

(d−1)(k−1) − t
1− t dt

We fix ε, and we will, at the end of this proof, fix Dε so that the statement holds.
Without loss of generality, suppose σ(root) = Xr. This value is independent of all the other

values used because the root is part of all paths and σ is injective on each path, so Xr doesn’t
occur a second time as a label.

Now we condition on Xr = γ for some fixed value γ ∈ [0, 1] and we consider, for 1 ≤ i ≤ r−1,
the binary random variables

Zi =

{
1 if Xi < γ

0 otherwise
.

The variables {Z1, Z2, ...Zr−1} are mutually independent binary random variables, each of
which takes value 1 with probability exactly γ. This is exactly the situation of Lemma 3.12, and
so we can use this result to conclude that

Pr[h(T ′) ≤ H | Xr = γ] ≥ R(d,k)(γ)− εH(γ).

To convert this conditional into an unconditional probability, we would like to invoke the law
of total probability, which, since Zr is uniformly distributed, reads

Pr[h[T ′] ≤ H] =

∫ 1

0

Pr[h(T ′) ≤ H | Xr = γ] dγ,

and then apply our previous inequality involving R(d,k)(γ). This is significantly harder than in
the 3-SAT case, though, because we do not have a closed expression for R(d,k)(γ). It is not even
obvious that an integral on R(d,k)(γ) is properly defined. We will proceed as follows:

• we will introduce a function q 7→ S(d,k)(q) that will allow us to characterize R(d,k)(γ)

• we will also show that we can use the Riemann sums approximations given in Lemma 2.14
and proven in Appendix A.4,

• and we will relate the integrals of R(d,k) and S(d,k) in a way that allows us to conclude the
proof of Theorem 3.8.

Definition 3.13. For p ∈ [0, 1), we define

S(d,k)(q) =
q

1
(d−1)(k−1) − q

1− q

and we let

S(d,k)(1) =
(d− 1)(k − 1)− 1

(d− 1)(k − 1)
.

We can now characterize R(d,k).

Lemma 3.14. For p ∈
[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
, we have R(d,k)(p) = 1.

For p ∈
[
0, (d−1)(k−1)−1(d−1)(k−1)

]
, R(d,k)(p) is the inverse of S(d,k)(q).

40

Proof. Recall that R(d,k)(p) is the smallest q ≥ 0 that satisfies the equation

q = (p+ (1− p) · q)(d−1)(k−1).

Since q = 1 satisfies this equation, then Rd,k(p) ≤ 1.
Let

f(d,k)(p, q) = (p+ (1− p)q)(d−1)(k−1).

f(d,k) is a growing function of p; for p ∈
[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
and q < 1, f(d,k) is minimized at

p = (d−1)(k−1)−1
(d−1)(k−1) . Then we have:

f(d,k)(p, q) = (p+ (1− p)q)(d−1)(k−1)

≥
(

(d− 1)(k − 1)− 1

(d− 1)(k − 1)
+ 1− 1

(d− 1)(k − 1)
q

)(d−1)(k−1)

=

(
1− 1

(d− 1)(k − 1)
(1− q)

)(d−1)(k−1)

Here we apply the following inequality, proven in Appendix B.1.2:

(1 + p)n > 1 + np,

which allows us to conclude that
f(d,k)(p, q) > q.

Hence, for p ∈
[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
, R(d,k)(p) = 1 (because there is no root for q < 1, so the first

root is 1), which proves the first part of the lemma.
For the second statement of the lemma, for q ∈ [0, 1), the following are equivalent:

(p+ (1− p)q)(d−1)(k−1) = q

p+ (1− p)q = q
1

(d−1)(k−1)

p(1− q) = q
1

(d−1)(k−1) − q

p =
q

1
(d−1)−k−1) − q

(1− q) = S(d,k)(q).

Therefore, if R(d,k)(p) < 1, then S(d,k)(q) is the inverse of R(d,k)(p). We now want to

prove that for p ∈
[
0, (d−1)(k−1)−1(d−1)(k−1)

)
, R(d,k)(p) < 1, which will conclude the proof of the second

statement of the lemma.
First observe that, for p = 0, the smallest q ≥ 0 satisfying the equation

q = (p+ (1− p))q)(d−1)(k−1) = q(d−1)(k−1)

is q = 0; hence R(d,k)(0) = 0 < 1, so we only have to prove the statement for 0 < p <
(d−1)(k−1)−1
(d−1)(k−1) .

By definition of Rd,k(p), we can write

R(d,k)(p) = (p+ (1− p)R(d,k)(p))
(d−1)(k−1).

41

Let δ = 1−R(d,k)(p); this yields:

(p+ (1− p)(1− δ))(d−1)(k−1) + δ = 1

(1− (1− p)δ)(d−1)(k−1) + δ − 1 = 0.

Let g(p, δ) = (1 − (1 − p)δ)(d−1)(k−1) + δ − 1. For a fixed 0 ≤ p ≤ (d−1)(k−1)−1
(d−1)(k−1) , g is a

continuous function of δ. Moreover, we have that, still for a fixed p, g′(p, δ) = (d− 1)(k− 1)(p−
1)(1 − (1 − p)δ)(d−1)(k−1)−1 + 1, which yields g′(p, 0) = (d − 1)(k − 1)(p − 1) + 1. So for d > 1
or k > 1, g′(p, 0) < 0. We also have that g(p, 0) = 0, and that g(p, 1) > 0 for p > 0. So for all

0 < p < (d−1)(k−1)−1
(d−1)(k−1) there exists a δ∗ > 0 such that g(δ∗, p) = 0. So 1− δ∗ < 1 is a solution of

q = (p+ (1− p))q)(d−1)(k−1) = q(d−1)(k−1)

which proves that R(d,k)(p) < 1, and hence that S(d,k)(q) is the inverse of R(d,k)(p) on the interval[
0, (d−1)(k−1)−1(d−1)(k−1)

)
.

Now we want, as we did in the 3-SAT case, to apply Lemma 2.14, which we recall here and
which is proven in Appendix A.4:

Lemma 2.14. Let φ : [0, 1]→ [0, 1] be a continuous and monotonically non-decreasing function.
Then for any N ≥ 1,

1

N

N−1∑
i=0

ϕ

(
1

N

)
≤
∫ 1

0

ϕ(x) dx ≤ 1

N

N−1∑
i=0

ϕ

(
1

N

)
+

1

N

As in the 3-SAT case, we have that Pr[h(T ′) ≤ H | Xr = γ] is continuous and non decreasing
as a function of γ, so∫ 1

0

Pr[h(T ′) ≤ H | Xr = γ] dγ ≥
N−1∑
i=0

1

N
Pr

[
h(T ′) ≤ H | Xr =

i

N

]
(3.1)

≥
N−1∑
i=0

1

N
R(d,k)

(
i

N

)
−
N−1∑
i=0

1

N
εH

(
i

n

)
. (3.2)

We will use the following fact to prove that Rd,k is continuous and non decreasing:

∀n ∈ N,∀a, b ∈ R, an − bn = (a− b)
n−1∑
i=0

aibn−1−i.

The proof of this statement is given in Appendix B.1.3.

Using a = 1 and b = q
1

(d−1)(k−1) , we have, for q ∈ [0, 1):

S(d,k)(q) =
q

1
(d−1)(k−1) − q

1− q

= 1− 1− q 1
(d−1)(k−1)

1− q

= 1− 1− q 1
(d−1)(k−1)(

1− q 1
(d−1)(k−1)

)∑(d−1)(k−1)−1
i=0 q

i
(d−1)(k−1)−1

= 1− 1∑(d−1)(k−1)
i=0 q

i
(d−1)(k−1)−1

.

42

From this it follows that q 7→ S(d,k)(q) is a continuous, strictly increasing function which

maps [0, 1] to
[
0, (d−1)(k−1)−1(d−1)(k−1)

]
.

But then, we have also established that R(d,k)(p) is the inverse of S(d,k)(q) for p ∈[
0, (d−1)(k−1)−1(d−1)(k−1)

]
, and 1 in

[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
. Consequently, on the interval

[
0, (d−1)(k−1)−1(d−1)(k−1)

]
,

R(d,k) is continuous and strictly increasing, mapping
[
0, (d−1)(k−1)−1(d−1)(k−1)

]
to [0, 1]. Hence, R(d,k)

is a continuous, non-decreasing function from [0, 1] to [0, 1]. This means that we can apply the
other side of the Riemann inequality in equation (3.2):∫ 1

0

Pr[h(T ′) ≤ H | Xr = γ] ≥
N−1∑
i=0

1

N
R(d,k)

(
i

N

)
−
N−1∑
i=0

1

N
εH

(
i

n

)

≥
∫ 1

0

R(d,k)(x) dx− 1

N
−
N−1∑
i=0

1

N
εH

(
i

N

)
.

By defining

ψ(N,H) =
1

N
+

N−1∑
i=0

1

N
εH

(
i

n

)
,

we get that, for an arbitrary n,

Pr[h(T ′) ≤ H] ≥
∫ 1

0

R(d,k)(x) dx− ψ(N, d).

Let us define

R(d,k) =

∫ 1

0

R(d,k)(x) dx

and

S(d,k) =

∫ 1

0

S(d,k)(x) dx.

We still need to relate R(d,k) to S(d,k) to be able to prove Theorem 3.8.
We need to prove the following lemma:

Lemma 3.15.
R(d,k) = 1− S(d,k).

Proof. We have:

1− S(d,k) = 1−
∫ 1

0

S(d,k)(t) dt.

We do integration by parts and we get:

1− S(d,k) = 1− 1 · S(d,k)(1) + 0 · S(d,k) +

∫ 1

0

S′(d,k)(t)t dt

=
1

(d− 1)(k − 1)
+

∫ 1

0

R(d,k)(S(d,k)(t))S
′
(d,k)(t) dt

We now use the following substitution rule, which is a classical result:

43

Lemma 3.16. Let f : I → R be a continuous function and φ : [a, b] → R a continuous
differentiable function where φ([a, b]) ⊂ I. Then we have∫ b

a

f(φ(t))φ′(t)dt =

∫ φ(b)

φ(a)

f(x) dx.

By using the substitution r = S(d,k)(t) and since
∫ 1

(d−1)(k−1)−1
(d−1)(k−1)

R(d,k)(r) dr = 1
(d−1)(k−1) , this

is ∫ 1

(d−1)(k−1)−1
(d−1)(k−1)

R(d,k)(r) dr +

∫ (d−1)(k−1)−1
(d−1)(k−1)

0

R(d,k)(r) dr = R(d,k).

The error term ψ(N,H) depends only on N and H and not on the choice of T ′. Therefore,
given ε > 0 as in Theorem 3.8, we can simply pick N = N(ε) which is large enough such that
1
N < ε/2, and then pick H = H(ε,N) large enough such that εH(x) < ε/2 for all the N points
x where the function is evaluated, yielding that ψ(N, d) ≤ ε and thus all possible tree have a
probability of having at most height H of at least R(d,k)−ε. Since the trees are (d−1)(k−1)-ary

trees, setting Dε > ((d− 1)(k − 1))H(ε,N(ε))+1 yields that

Pr[|V (T ′) ≤ Dε] ≥ R(d,k) − ε = 1− S(d,k) − ε
and consequently that

Pr[|V (T ′) > Dε] ≤ S(d,k) + ε

as desired.
We use this theorem to finish the proof of Theorem 3.3. We introduce the notation

S
(D)
(d,k) = sup

T

(
Pr

X1,...,Xr
[|V (T ′)| > D]

)
where the supremum is over all choices of finite trees with labels T (as in Theorem 3.8) and T ′

is the random tree arising from t by conducting the experiment described in Theorem 3.8. In
this language, the theorem states that

lim
D→∞

S
(D)
(d,k) ≤ S(d,k).

The limit exists because S
(D)
(d,k) is monotonic (it decreases as D increases) and bounded.

Recall that

E
π

[|Guessed(F, α0, α
∗, π,D)|] = n(α0)−

∑
x∈U(α0)

Pr
π

[x ∈ Forced(F, α0, α
∗, π,D)]

≤ n(α0)−
∑

x∈U(α0)

Pr
π

[
Reachable(Tx, π(x), π| ≤ D

d− 1

]

By definition of S
(D)
(d,k), this gives

E
π

[|Guessed(F, α0, α
∗, π,D)|] ≤ S(D/(d−1))

(d,k) · n

where, by Theorem 3.3, S
(D/(d−1))
(d,k) → ∞. This can be achieved by selecting D to be some

function that grows slowly in n, for instance D = log log n. This still allows us to examine all
G ⊆ F such that |G| ≤ D and check for D-implications in subexponential time, and thus to
obtain Theorem 3.3.

44

3.3 Multiple satisfying assignments

In the previous section, we’ve proven Theorem 3.3, which deals with the case where F has a
unique satisfying assignment. In general, though, we cannot rely on such a strong assumption,
and we would like to prove Theorem 3.1, which we re-state here:

Theorem 3.1. For any satisfiable (d, k)-ClSP formula F on n variables V , ppsz-weak(F, V,
α0, log log n) returns some satisfying assignment with probability Ω(d−S(d,k)n−o(n)).

where

S(d,k) =

∫ 1

0

t
1

(d−1)(k−1) − t
1− t dt

The proof of this theorem follows again the structure established in Chapter 2: we will define
a cost function, and relate it to the probability of success of ppsz-weak.

As in the 3-SAT case, the analysis of the unique case does not go through in the general case
because there is no guarantee that we can build critical clause trees for the formula. If a given
variable has the same value in all the satisfying assignments, we call this variable “frozen”. In
that case, the argument goes through, and we can state the following lemma:

Lemma 3.17. Let F be a (d, k)-ClSP formula and x be a frozen variable. Let furthermore α

be any satisfying assignment. Then Pr[x ∈ Guessed(F, α0, α, π,D)] ≤ S(D)
(d,k).

3.3.1 Definition of a cost function

We proceed as in the 3-SAT case. We want to define a cost function that is bounded by S
(D)
(d,k),

and which never increases when doing a step of the ppsz-weak algorithm. The intuition behind
the cost definition is given in Section 2.3.3 for the 3-SAT case and can be easily translated to
the ClSP case.

We partition the variables into three categories:

vbl(F) = Vfo(F) ∪̇Vfr(F) ∪̇Vnf(F)

where

• Vnf(F) are the variables that are not frozen, i.e. the one that can be assigned at least two
values while keeping the formula satisfiable. We define the shorthand Vnf(α0) = Vnf(F

[α0]).

• Vfo(F) are the variables that are currently forced: they are frozen, and they follow from F
via D-implication, that is there exists c such that for every c′ 6= c, c ∈ [d], F �D (x 6= c′).
We define the shorthand Vfo(α0) = Vfo(F [α0]).

• Vfr(F) are the variables that are frozen, but not forced. We define the shorthand Vfr(α0) =
Vfr(F

[α0]).

Now we can define the cost function as follows.

Definition 3.18. Let α0 be a partial and α be a total assignment, and let x be any variable.
We define the cost of x when completing α0 to α, in writing cost(α0, α, x) as follows:

• If x 6= U(α0), then cost(α0, α, x) = 0.

• If α0 and α are incompatible, i.e. ∃y ∈ vbl(α0), α0(y) 6= α(y), then cost(α0, α, x) = 0.

• If α does not satisfy F , then cost(α0, α, x) = 0.

45

• Else:

– If x ∈ Vfo(α0), then cost(α0, α, x) = 0.

– If x ∈ Vfr(α0), then

cost(α0, α, x) = Pr
π

[x ∈ Guessed(F, α0, α, π,D)].

– If x ∈ Vnf(α0), then cost(α0, α, x) = S
(D)
(d,k).

Recall the definition of likelihood that we gave in the 3-SAT case:

Definition 2.17. Let F [α0] be satisfiable and let Sα0
be the set of value assignments l = {x 7→ b}

such that x ∈ U(α0) and F [α0[l]] is satisfiable.
We define the random process AssignSL(F, α0) that produces an assignment on vbl(F) as

follows. Start with the assignment α0, and repeat the following step until vbl(F [α0]) = ∅: Choose
a value assignment l ∈ Sα0

uniformly at random and add l to α0. At the end, output α0.
Let α be a total assignment on vbl(F). Then the likelihood of completing α0 to α, in writing

lkhd(α0, α) is defined as the probability that AssignSL(F, α0) returns α. For completeness, if
F [α0] is not satisfiable, we define lkhd(α0, α) = 0.

Then we define the cost of x when completing α0 to any satisfying assignment as:

cost(α0, x) =
∑

α∈satV (F)

lkhd(α0, α) · cost(α0, α, x) =
∑

α∈satV (F)

wcost(α0, α, x)

and the total cost of completing α0 to any satisfying assignment as

cost(α0) =
∑
x∈V

∑
α∈satV (F)

lkhd(α0, α) · cost(α0, α, x)

We will prove the following lemma:

Lemma 3.19. Let α0 be such that F [α0] is satisfiable. Then the overall probability of
ppsz-weak to output some satisfying assignment when starting in state α0 is at least d−cost(α0).

Observe moreover the following:

Observation 3.20. For any α0, α, x we have cost(α0, α, x) ≤ S
(D)
(d,k). Furthermore, cost(α0) ≤

S
(D)
(d,k)n(α0).

This observation follows directly from the definition of the cost and from Lemma 3.17. Prov-
ing Lemma 3.19 allows us to conclude directly that Theorem 3.1 holds as well.

3.3.2 Proving Lemma 3.19

Setup of the proof of Lemma 3.19

We first define p(α0) as the probability that ppsz-weak outputs some satisfying assignment
when starting from state α0.

We define the set Sα0
as follows:

Sα0 := {(x, c) ∈ U(α0)× [d] | Fα0∪{x 7→c}] is satisfiable}

46

and the set Sα0
(x), for every x ∈ Uα0

, as

Sα0
(x) := {(x, c) ∈ {x} × [d] | Fα0∪{x 7→c}] is satisfiable}.

The set Sα0 represents all the choices that the ppsz-weak run can do and still have a
satisfying formula in the next step. The set Sα0

contains at least 2|Vnf(α0)|+|Vfo(α0)|+|Vfr(α0)|
elements.

The proof of Lemma 3.19 is a proof by induction. We suppose that the claim holds for all α0

that fix a larger number of variables. If α0 is total, then the statement holds trivially, because
the cost of α0 is 0, and p(α0) = 1.

Let x and c be random variables: x ∈ U(α0), and c is the forced value by D-implication if
x ∈ Vfo(α0), and u.a.r. in [d] otherwise.

We have:
p(α0) = E

x∈u.a.r.U(α0),c
[p(α0 ∪ {x 7→ c})].

(x, c) is in Sα0 if:

• x ∈ Vnf(α0) and (x, c) ∈ Sα0
(x);

• x ∈ Vfr(α0), and c has the correct value: x is not forced, so c is chosen at random in [d],
but Sα0

contains only one of these values because x is frozen;

• x ∈ Vfo(α0), because x is forced, so c is not chosen at random but gets assigned its proper
value, and Sα0

contains (x, c).

Hence, the probability that (x, c) ∈ Sα0
is

Pr[(x, c) ∈ Sα0
]

= Pr[x ∈ Vnf(α0) ∧ (x, c) ∈ Sα0
(x)] + Pr[x ∈ Vfo(α0)] +

1

d
Pr[x ∈ Vfr(α0)]

=

∑
x∈Vnf(α0)

|Sα0(x)|
dn(α0)

+
|Vfo(α0)|
n(α0)

+
|Vfr(α0)|
dn(α0)

=

∑
x∈Vnf(α0)

|Sα0
(x)|+ d|Vfo(α0)|+ |Vfr(α0)|
dn(α0)

=
|Sα0
|+ (d− 1)|Vfo(α0)|

dn(α0)

Hence, our working expression becomes:

p(α0) =
|Sα0
|+ (d− 1)|Vfo(α0)|

dn(α0)
E

x∈u.a.r.U(α0),c
[p(α0 ∪ {x 7→ c}) | (x, c) ∈ Sα0

]. (3.3)

Relating to uniform choice over Sα0

As we did in the 3-SAT case, we relate the probability distribution over “x, then c” to the
distribution uniformly at random over Sα0 .

Consider the event “a given (x, c) is chosen next in the process”; we look at the probabilities
of said event within both distributions.

47

x ∈ Vfo(α0) x ∈ Vfr(α0) x ∈ Vnf(α0)

(x, c) /∈ Sα0
(x, c) ∈ Sα0

(x, c) /∈ Sα0
(x, c) ∈ Sα0

(x, c) /∈ Sα0
(x, c) ∈ Sα0

x, then c 0
1

n(α0)

1

n(α0)
· 1

d

1

n(α0)
· 1

d

1

n(α0)
· 1

d

1

n(α0)
· 1

d

u.a.r in Sα0
0

1

|Sα0 |
0

1

|Sα0 |
0

1

|Sα0 |

We do not care what happens when (x, c) /∈ Sα0
, because then the corresponding term in the

expectation will be 0 anyway. The weight of variables in Vfo(α0) is d times the weight of the
other variables; we define

w(x, c) :=

{
d if x ∈ Vfo(α0)
1 otherwise

If we change the expectation of equation (3.3) to (X,C) ∈ Sα0
u.a.r., each (X,C) ∈ Sα0

now
has weight w(X,C). We still have to normalize the weight: the probability distribution must
sum to one. Let W be the normalization factor:

∑
(x′,c′)∈Sα0

Pr[(x′, c′) 7→ (X,C)] = W ·
∑

(X,C)∈Sα0

w(X,C) · 1

|Sα0
|

= W · |Sα0
|+ (d− 1)|Vfo(α0)|

|Sα0 |

So the normalization factor is W =
|Sα0 |

|Sα0
|+(d−1)|Vfo(α0)| , which in turns allows us to write:

p(α0) =
|Sα0 |+ (d− 1)|Vfo(α0)|

dn(α0)

· E
(X,C)∈u.a.r.Sα0

[|Sα0
|

|Sα0
|+ (d− 1)|Vfo(α0)|w(X,C)p(α0 ∪ {X 7→ C})

]
=

|Sα0 |
dn(α0)

E
(X,C)∈u.a.r.Sα0

[w(X,C)p(α0 ∪ {X 7→ C})]

3.3.3 Using the induction hypothesis

We have now expressed p(α0) in terms of an expectation that depends on the uniform choice
over the possible value assignments of F [α0]. From now one, we will omit in this proof the
(X,C) ∈u.a.r. Sα0

for ease of notation and reading.
We first use Jensen’s inequality, so that we get expressions with which we can work. This

yields:

p(α0) ≥ d
logd

(|Sα0 |
dn(α0)

)
dE[logd(w(X,C)p(α0∪{X 7→C})]

= d
logd

(|Sα0
|

dn(α0)

)
dE[logd(w(X,C)]−E[− logd(p(α0∪{X 7→C}))]

by linearity of expectation.

48

Since logd(1) = 0 and logd(d) = 1, we have exactly that

E[log(w(X,C))] = Pr[w(X,C) = d] = Pr[x ∈ Vfo(α0)] =
|Vfo(α0)|
|Sα0
| .

Moreover, we can now apply the induction hypothesis, which states that

p(α0 ∪ {X 7→ C}) ≥ d−cost(α0∪{X 7→C})

to state that
E[− logd(p(α0 ∪ {X 7→ C}))] ≤ E[cost(α0 ∪ {X 7→ C})].

Putting everything together, we obtain

p(α0) ≥ dlogd
(|Sα0

|
dn(α0)

)
+
|Vfo(α0)|
|Sα0

| −E[cost(α0∪{X 7→C}]
. (3.4)

Now the only thing that we need to evaluate is E[cost(α0 ∪ {X 7→ C})]. To do this, we will
first need to establish a few facts about cost and likelihood.

Lemma 3.21. Let α0 and α be fixed and compatible. For any fixed variable x ∈ U(α0), if we
set x according to α, then

(i) the likelihood of α can only increase, i.e.

lkhd(α0 ∪ {x 7→ α(x)}, α) ≥ lkhd(α0, α),

with equality if x is frozen in F [α0].

(ii) the cost of a fixed variable y ∈ V w.r.t. α can only decrease, i.e.

cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y).

When choosing x ∈ U(α0) uniformly at random and setting it according to α, then

(iii) the likelihood of α increases on average as

E[lkhd(α0 ∪ {x 7→ α(x)}, α)] =

(|Sα0
|

n(α0)

)
lkhd(α0, α).

(iv) the cost of a fixed, frozen, non-forced variable y ∈ Vfr(α0) decreases on expectation as

E[cost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ cost(α0, α, y)− 1

n(α0)
.

Proof. (i) We prove the claim by induction over the size of α0. The claim holds trivially if α0

is a complete assignment. Otherwise, we have

lkhd(α0, α) = E
(x′,c′)∈Sα0

lkhd(α0 ∪ {x′ 7→ c′}, α)

=
∑

(x′,c′)∈Sα0

1

|Sα0
| lkhd(α0 ∪ {x′ 7→ c′}, α)

=
∑

x′∈U(α0)

1

|Sα0 |
lkhd(α0 ∪ {x′ 7→ α(x′)}, α)

=
1

|Sα0
|

lkhd(α0 ∪ {x 7→ α(x)}, α) +
∑

x′∈U(α0)\{x}

lkhd(α0 ∪ {x′ 7→ α(x′)}, α)

 .

49

We apply the induction hypothesis and we get

lkhd(α0, α) ≤ 1

|Sα0 |

lkhd(α0 ∪ {x 7→ α(x)}, α)

+
∑

x′∈U(α0)\{x}

lkhd(α0 ∪ {x′ 7→ α(x′)} ∪ {x 7→ α(x)}, α)


=

1

|Sα0
|
(
lkhd(α0 ∪ {x 7→ α(x)}, α)

+ |Sα0∪{x7→α(x)}|lkhd(α0 ∪ {x 7→ α(x)}, α)
)
.

Now observe that, since Sα0∪{x 7→c} (Sα0 , then |Sα0∪{x7→c}| ≤ |Sα0
| − 1, and this allows

us to conclude that
lkhd(α0, α) ≤ lkhd(α0 ∪ {x 7→ α(x)}).

If x is forced, then by induction hypothesis we have the equality in the previous reasoning,
and we have |Sα0∪{x 7→c}| = |Sα0

| − 1, which proves the equality.

(ii) We consider the three cases of Definition 3.18. Note that if x = y, the statement holds
trivially.

If y ∈ Vnf(α0), then cost(α0, α, y) = S
(D)
(d,k). Since the cost of a variable is always less than

S
(D)
(d,k), the statement holds.

If y ∈ Vfr(α0) or y ∈ Vfo(α0), then cost(α0, α, y) is the probability that y is not forced in
the remainder of the ppsz-weak run. If we now fix another variable x to α(x), then this
probability cannot increase, because adding a value assignment cannot “un-force” another
variable. So cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y).

(iii) We have

lkhd(α0, α) =
∑

(x,c)∈Sα0

1

|Sα0
| lkhd(α0 ∪ {x 7→ c}, α)

=
∑

x∈U(α0)

1

|Sα0 |
lkhd(α0 ∪ {x 7→ α(x)}, α)

=
n(α0)

|Sα0 |
E

x∈u.a.rU(α0)
[lkhd(α0 ∪ {x 7→ α(x)}, α)],

which proves the statement.

(iv) The statement tells us that the probability that y is guessed is reduced by 1/n(α0) after
one step. This is because with probability 1/n(α0), y comes next in π and is guessed
now (since it is not forced now). This 1/n(α0) is counted in cost(α0, α, y) but not in
E[cost(α0 ∪ {x 7→ α(x)}, α, y)].

Evaluating E[cost(α0 ∪ {X 7→ C})]
In this section, we will prove the following lemma:

50

Lemma 3.22. If (X,C) ∈ Sα0
is selected uniformly at random, then

E[cost(α0 ∪ {X 7→ C})] ≤ cost(α0)− |Vfr(α0)|
|Sα0
| −

S
(D)
(d,k)

|Sα0
|

∑
x∈Vnf(α0)

|Sα0(x)|.

To prove this lemma, we will need the following auxilliary lemma:

Lemma 3.23. Let α be a fixed satisfying assignment and α0 ⊆ α. Let y ∈ Vfr(α0) be a fixed
frozen variable. If we select x ∈ U(α0) uniformly at random and assign it according to α, then

E[wcost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ wcost(α0, α, y) · |Sα0
|

n(α0)
− lkhd(α0, α)

n(α0)

Proof. We use, as in the 3-SAT case, Lemma 2.24 (proven in Appendix B.2.1), which we recall
here:

Lemma 2.24. Let A,B ∈ R be random variables and a, b, ā, b̄ ∈ R fixed numbers such that
A ≥ a and B ≤ b always, and E[A] = ā and E[B] = b̄. Then

E[A ·B] ≤ ab̄+ bā− ab.

We have that wcost(α0∪{x 7→ α(x)}, α, y) = lkhd(α0∪{x 7→ α(x)}, α)·cost(α0∪{x 7→ α(x)},
α, y), so we define A = lkhd(α0 ∪ {x 7→ α(x)}, α) and B = cost(α0 ∪ {x 7→ α(x)}, α, y). Using

Lemma 3.21, we define a = lkhd(α0, α), ā =
|Sα0

|
n(α0)

lkhd(α0, α), b = cost(α0, α, y) and b̄ ≤ cost(α0,

α, y)− 1
n(α0)

. Applying our correlation inequality, we deduce that, for y ∈ Vfr(α0), when selecting

x ∈ U(α0) u.a.r. and assigning it according to α, we have:

E[wcost(α0 ∪ {x 7→ α(x)}, α, y)]

≤ lkhd(α0, α)

(
cost(α0, α, y)− 1

n(α0)

)
+ cost(α0, α, y)

|Sα0
|

n(α0)
lkhd(α0, α)

−lkhd(α0)cost(α0, α, y)

= wcost(α0, α, y)
|Sα0
|

n(α0)
− lkhd(α0, α)

n(α0)
.

We can now prove Lemma 3.22.

Proof of Lemma 3.22. We analyze the cost decrease contribution of the different types of vari-
ables separately. Each variable forced in state α0 contributes zero cost both before and after the
step.

For a non-frozen variable y ∈ Vnf(α0), note that Sα0 contains |Sα0(y)| pairs containing y, in
contrats to the other types of variables of which Sα0 features only one pair each. This means that
with probability |Sα0

(y)|/|Sα0
|, a pair featuring y is selected. In that case, the cost contribution

of y drops from S
(D)
(d,k) in all assignments. No matter what happens to these costs otherwise (they

certainly cannot increase by definition), the non-frozen variables hence contribute the last term
of the claimed inequality.

Now consider the frozen variables. If we fix some satisfying and α0-compatible assignment
α ∈ [d]V , and condition the experiment on the event that α(X) = C, then X becomes uniformly
at random among U(α0) because Sα0

contains exactly one pair (x′, c′) per variable x′ ∈ U(α0)

51

such that α(x′) = c′. Now we can apply directly Lemma 3.23 to find that, conditioning on
α(X) = C, the cost of each frozen variable drops on average as

E[wcost(α0 ∪ {X 7→ C}, α, y) | α(X) = C] ≤ wcost(α0, α, y) · |Sα0 |
n(α0)

− lkhd(α0, α)

n(α0)
.

The condition itself is satisfied with probability n(α0)/|Sα0
|. If it does not apply, then the

cost contribution of α drops to zero altogether. Therefore, the unconditional change can be
obtained by multiplying the right-hand side by n(α0)/|Sα0

|, which then yields

E[wcost(α0 ∪ {X 7→ C}, α, y)] ≤ wcost(α0, α, y)− lkhd(α0, α)

|Sα0 |
.

If we sum over all assignments α ∈ [d]V , the claim follows.

Putting everything together

We are back to the main track of the proof of Lemma 3.19, and we can now introduce the result
from Lemma 3.22 into equation (3.4). We obtain:

p(α0) ≥ dlogd
(|Sα0

|
dn(α0)

)
+
|Vfo(α0)|
|Sα0

| −cost(α0)+
|Vfr(α0)|
|Sα0

| −
S
(D)
d,k
|Sα0

|
∑
x∈Vnf(α0) |Sα0

(x)|
.

Since we want to show that p(α0) ≥ d−cost(α0), we need to show:

logd

(|Sα0 |
dn(α0)

)
+
|Vfo(α0)|
|Sα0
| +

|Vfr(α0)|
|Sα0
| −

S
(D)
(d,k)

|Sα0
|

∑
x∈Vnf(α0)

|Sα0
(x)| ≥ 0.

To refer easily to this quantity, we define

L := logd

(|Sα0
|

dn(α0)

)
+
|Vfo(α0)|
|Sα0 |

+
|Vfr(α0)|
|Sα0 |

−
S
(D)
(d,k)

|Sα0 |
∑

x∈Vnf(α0)

|Sα0
(x)|

We write

logd

(|Sα0 |
dn(α0)

)
= −1 + log

(|Sα0 |
n(α0)

)
= −1 + logd

(
|Vfr(α0)|+ |Vfo(α0)|+∑x∈Vnf(α0)

|Sα0
(x)|

n(α0)

)

= −1 + logd

(
1 +

∑
x∈Vnf(α0)

(|Sα0(x)| − 1)

n(α0)

)

We now use an inequality about logarithms, namely that for x ≥ 0,

logd(1 + x) ≥ logd(e)
x

1 + x
.

52

This inequality is proven in Appendix B.1.1. This yields:

logd

(|Sα0
|

dn(α0)

)
≥ −1 + logd(e)

∑
x∈Vnf(α0)(|Sα0 (x)|−1)

n(α0)

1 +
∑
x∈Vnf(α0)(|Sα0

(x)|−1)
n(α0)

= −1 + logd(e)

∑
x∈Vnf(α0)

(|Sα0(x)| − 1)

n(α0) +
∑
x∈Vnf(α0)

(|Sα0
(x)| − 1)

= −1 + logd(e)

∑
x∈Vnf(α0)

(|Sα0(x)| − 1)

|Sα0
|

Moreover, we have that

−1 +
|Vfo(α0)|
|Sα0 |

+
|Vfr(α0)|
|Sα0 |

+
S
(D)
(d,k)

|Sα0 |
∑

x∈Vnf(α0)

|Sα0(x)|

= −|Sα0
|

|Sα0 |
+
|Sα0
| −∑x∈Vnf(α0)

|Sα0
(x)|

|Sα0 |
+
S
(D)
(d,k)

|Sα0 |
∑

x∈Vnf(α0)

|Sα0(x)|

= − 1

|Sα0
|

(1− S(D)
(d,k)

) ∑
x∈Vnf(α0)

|Sα0
(x)|


Therefore, we get

L ≥ logd(e)

∑
x∈Vnf(α0)

(|Sα0
(x)| − 1)

|Sα0
| − 1

|Sα0
|

(1− S(D)
(d,k)

) ∑
x∈Vnf(α0)

|Sα0
(x)|


=

1

|Sα0
|

logd(e)
∑

x∈Vnf(α0)

(|Sα0
(x)− 1)−

(
1− S(D)

(d,k)

) ∑
x∈Vnf(α0)

|Sα0
(x)|


=

1

|Sα0
|

∑
x∈Vnf(α0)

(
logd(e)(|Sα0(x)| − 1)− (1− S(D)

(d,k))|Sα0(x)|
)

Proving that every term of the sum is positive proves that L ≥ 0. For x ∈ Vnf(α0), we know
that |Sα0

(x)| ≥ 2. So the following holds:

logd(e)(|Sα0(x)| − 1)−
(

1− S(D)
(d,k)

)
|Sα0(x)| ≥ 0

⇔ logd(e)−
(

1− S(D)
(d,k)

) |Sα0(x)|
|Sα0

(x)| − 1
≥ 0

where
|Sα0

(x)|
|Sα0 (x)|−1

≤ 2. It follows that L ≥ 0 if logd(e)− 2
(

1− S(D)
(d,k)

)
≥ 0.

For d = 2 and k = 3, we already observed, at the end of Section 2.3, that log e+ 2S
(D)
(2,3) > 2,

which proves the statement for d = 2 and k = 3. Moreover, from the definition of S(d,k), it can
be easily seen that S(d,k) increases for larger k, so S(d,k) ≥ S(d,3).

Suppose now that d > 2. We prove the following lemma:

Lemma 3.24.

S(d,3) ≥ 1−
(
π2

12

)
1

d− 1

53

Proof. For ease of notation, we define m = 2(d − 1). Recall that S(d,3) =
∫ 1

0
Sd,3(t) dt. By

definition of S(d,k)(t), we have:

S(d,3)(t) =
t

1
(d−1)(3−1) − t

1− t =
t1/m − t

1− t

= 1− 1− t1/m
1− t

= 1− (1− t1/m)

∞∑
i=0

ti

= 1−
∞∑
i=0

(ti − ti+1/m)

Thus,

S(d,3) = 1−
∫ 1

0

∞∑
i=0

(ti − ti+1/m) dt.

We want to apply the monotone convergence theorem to exchange the integral and the sum.
For this we define fk(t) =

∑k
i=0(ti − ti+1/m). Then the sequence f1, f2... is pointwise non-

decreasing because ti − ti+1/m ≥ 0 for t ∈ [0, 1] and the pointwise limit of the sequence (fn) is,
for every t,

lim
k→∞

fk(t) = 1− S(d,3)(t).

Then ∫ 1

0

∞∑
i=0

(ti − ti+1/m) dt =

∫ 1

0

lim
k→∞

fk(t) dt

= lim
k→∞

∫ 1

0

fk(t) dt

= lim
k→∞

∫ 1

0

k∑
i=0

(ti − ti+1/m) dt

= lim
k→∞

k∑
i=0

∫ 1

0

ti − ti+1/m dt

=

∞∑
i=0

∫ 1

0

ti − ti+1/m dt

as desired.

54

We then continue the computation:

S(d,3) = 1−
∞∑
i=0

∫ 1

0

(ti − ti+1/m) dt = 1−
∞∑
i=0

(
1

i+ 1
− 1

i+ 1 + 1
m

)

= 1−
∞∑
i=1

(
1

i
− 1

i+ 1
m

)

= 1−
∞∑
i=1

1
m

i
(
i+ 1

m

)
= 1− 1

m

∞∑
i=1

1

i
(
i+ 1

m

)
≥ 1− 1

m

∞∑
i=1

1

i2

= 1− 1

m

π2

6
= 1−

(
π2

12

)
1

d− 1

Back to the main computation, we have shown that L ≥ 0 if logd(e)−2(1−S(d,3)) ≥ 0, which
yields that L ≥ 0 if the following condition holds:

logd(e)−
(
π2

6

)
1

d− 1
≥ 0

⇔ 1

ln d
≥
(
π2

6

)
1

d− 1

⇔
(
π2

6

)
ln d ≤ d− 1

⇔ d− 1−
(
π2

6

)
ln d ≥ 0

For d = 3, we have that 2−
(
π2

6

)
ln 3 ≥ 0. Furthermore, d− 1−

(
π2

6

)
ln d is monotonically

increasing as the derivative is 1−
(
π2

6

)
1
d > 0 for d ≥ 3.

This concludes the proof of Lemma 3.19, which in turn concludes the proof of Theorem 3.1.

3.4 Summary

To prove Theorem 3.1, we went through the following steps:

1. We first proved Theorem 3.3, which makes the analysis of the algorithm easier by consid-
ering a single satisfying assignment.

2. We used the bound obtained in this analysis to define a cost function for the formula. By
definition, this cost is bounded by the value that we need to establish the same bound on
the runtime of ppsz-weak as in the unique case.

55

3. We proved that the probability that ppsz-weak returns any satisfying assignment is at
least 2−cost(F), where cost(F) is the cost of returning a satisfying assignment when starting
with an empty assignment. For this, we had to prove that, for any α0 such that F [α0] is
satisfiable,

L = logd
|Sα0
|

n(α0)
+
|Vfo(α0)|
|Sα0 |

+
|Vfr(α0)|
|Sα0 |

−
S
(D)
(d,k)

|Sα0 |
∑

x∈Vnf(α0)

|Sα0(x)|

is non-negative, which required us to bound the different quantities of this expression and
to apply some numerical values to the result.

56

Chapter 4

A strong version of PPSZ for
(d, k)-ClSP

We’ve observed in Chapter 3 that there was an obvious improvement to the weak PPSZ algorithm
that is presented there: instead of picking the value of the non-forced variable uniformly at
random from the complete domain [d], we can pick it from the set of the non-forbidden variables.

This chapter deals with the analysis of this variant of the algorithm. The results presented
in this chapter have been developed by Szedlák [7] for the unique case and Millius [3] for the
general case.

4.1 The algorithm

In this chapter, we will consider the following algorithm for (d, k)-ClSP formulas.

ppsz-weak(F, V, α0, D)

π ← a permutation of U(α0) chosen u.a.r.
return ppsz-strong(F, V, α0, D, π)

ppsz-strong(F, V, α0, D, π)

αprog ← α0

for i← 1 to n(α0)
do

x← xπi
G(x, π)← {c ∈ [d] | F [αprog]] 2D (x 6= c)}
if G(x, π) = ∅

then return ’failure’
c←u.a.r. G(x, π)
αprog ← αprog ∪ {x 7→ c}

if αprog satisfies F
then return αprog

else return ’failure’

We will follow the same structure for this algorithm as we did in the previous chapter: we
will first prove a theorem concerning the unique case. Ideally, we would like to be able to prove

57

that the bound that we prove for the unique case is also attained for the general case; although
we believe that it is indeed the case, it is not yet fully proven.

The theorem for the unique case is stated as follows:

Theorem 4.1. For any (d, k)-ClSP formula F on n variables V which has a unique sat-
isfying assignment, ppsz-strong(F, V, α0, log log n) returns this assignment with probability

Ω(d−
∑
x∈U(α0) E[logd(|A(x,π)|]n), where

E[logd(|A(x, π)|)] ≤
d−1∑
j=0

(
d− 1

j

)
logd(1 + j)

·
∫ 1

0

sd−1−j(1− s)j ·
(1− sd−1)(1

k−1s
1
k−1−1 − (d− 1)sd−2) + (s

1
k−1 − sd−1)(d− 1)s(d−2)

(1− sd−1)2
ds.

4.2 Unique satisfying assignment

In this section, we consider that the formula F has a unique satisfying assignment α∗. Without
loss of generality, we suppose that this satisfying assignment is the all-d assignment, i.e. α∗ = (d,
d, ..., d). As in the previous chapters, we will use α0 to denote a partial assignment, U(α0) to
denote the variables that are not fixed by α0 and n(α0) = |U(α0)|. These definitions will be
mostly used in the multiple satisfying assignment case. In this section, we can assume that
α0 = ∅, U(α0) = V and n(α0) = n.

4.2.1 The sets A(x, π,D)

We will use the sets A(x, π,D) to analyze the success probability of ppsz-strong.

Definition 4.2. For every variable x, every total assignment α, every partial assignment α0

compatible with α, every integer D, and every permutation π, we define the sets A(x, α0, α, π,
D) as follows:

A(x, α0, α, π,D) = {c ∈ [d] | F [α0∪β]] 2D (x 6= c)}
where β is the partial assignment corresponding to the restriction of α to the variables that come
before x in π.

In the unique satisfying assignment case, we are only interested in α = α∗, the satisfying
assignment. We also consider that α0 = ∅. In what follows, we will denote A(x, ∅, α∗, π,D) by
A(x, π,D).

Observe that ppsz-strong(F, V, α0, D, π) returns the satisfying assignment α∗ if and only if
it picks the right value α∗(x) when processing x. It does so with probability 1

|A(x,π,D)| , always.

For a fixed permutation π, we obtain

Pr[ppsz-strong(F, V, α0, D, π) returns α∗] =
∏

x∈U(α0)

1

|A(x, π,D)|

and, consequently, for π chosen uniformly at random,

Pr[ppsz-strong(F, V, α0, D) returns α∗] = E
π

 ∏
x∈U(α0)

1

|A(x, π,D)|

 .

58

We apply Jensen’s inequality (see Appendix A.1) with the convex function x 7→ d−x and we
obtain

Pr[ppsz-strong(F, V, α0, D) returns α∗] ≥ d−
∑
x∈U(α0) Eπ [logd |A(x,π,D)|].

The rest of this section will be devoted to the evaluation of Eπ[logd |A(x, π,D)|].

4.2.2 Building critical clause trees

The core reasoning here is the same than in the 3-SAT case and than in the ppsz-weak case.
However, in the current case, we are not only interested in knowing whether or not a variable
is forced or not, but we want to know the “degree of freedom” of non-forced variables. In the
ppsz-weak case, this would correspond to the number of directions in which the tree extends
“too much” to conclude that the variable is forced.

The way we analyse this is to build not one tree per variable x, but (d − 1) trees for each
variable. The root of each of these trees has children in only one direction, corresponding to a
given value assignment for x. The rest of the tree is built as in the ppsz-weak analysis. This will
allow us to evaluate the number of trees for which the analogue of the set Reachable(Tx, π(x), π)
is too large, and hence bound the size of the set A(x, π,D) for each x.

We consider a formula F that has a unique assignment α∗, and let α∗ be, without loss of
generality, the all-d assignment.

We construct a collection of trees {T cx}x∈U(α0),c∈[d−1]; for a given variable x, the set of trees
{T cx}c∈[d−1] is called the set of critical clause trees of x.

Recall the following definition:

Definition 3.5. We call T a rooted tree with children into j directions if the following holds. T
is a tree with a designated root, root(T). The children of a vertex v are partitioned into j groups
which we denote Children1(v), Children2(v),..., Childrenj(v). Each child belongs to exactly one
group, i.e. Childreni(v) and Childrenk(v) are disjoint sets whenever i 6= k.

We build, for every x ∈ U(α0) and for every c ∈ [d− 1], a rooted tree into (d− 1) directions
T cx , where every node u ∈ V (T) is labelled both with a variable x ∈ V , which we denote by
var-label(u), and a set of clauses C ∈ F [α0], denoted by clause-label(u). Here is how T cx is built
for a fixed x ∈ U(α0) and a fixed c ∈ [d− 1]:

1. Start with T cx consisting of a single root. This root has variable label x, and and empty
clause label.

2. Let C be a constraint that is not satisfied by α∗[x 7→ c]. Let C be the clause label of the
root. For each literal (y 6= d) ∈ C, add a child to the root, which is var-labeled with the
variable the literal is over. We define these nodes to be in Childrenc(x).

3. As long as there is a leaf u ∈ V (T) that has an empty clause label, do the following:

(a) Define W := {var-label(v) | v ∈ V (T) is an ancestor of u in T}, where ancestor in-
cludes u itself and the root.

(b) Let the path from the root to be such that var-label(y0) = x, y1 ∈ Children`1(x),
y2 ∈ Children`2(y1), ..., ym ∈ Children`m(ym−1), u ∈ Children`m+1(ym). Then `1, ...,
`m+1 are well-defined, and uniquely defined. We define the partial assignment µ0 as
follows:

µ0 : vbl(F)→ {0, 1},

 µ0(var-label(yi)) = `i+1 ∀i ∈ {0, ...,m}
µ0(z) = α∗(z) = d ∀z /∈ {var-label(y0), ...,

var-label(ym), var-label(u)}

59

(c) For j = 1 to d − 1, we define µj = µ0[var-label(v) 7→ j]. For each j, let Cj be a
constraint that is not satisfied by µj . Since µj is not compatible with α∗ and α∗ is
the unique satisfying assignment, such a clause exists. Add Cj to clause-label(u).

(d) For each literal (y 6= d) in Cj , add a node to Childrenj(v), which is var-labeled with
the variable the literal is over.

We denote the resulting tree by T cx . Note that T cx is not unique for a given x and a given c.
We still consider the collection {T cx}x∈U(α0),c∈[d−1] to be fixed from now on.

The root has at most (k − 1) children; any other node has at most (d − 1)(k − 1) children:
for each non-root node, we add, for each j = 1 to d− 1, a group of at most (k − 1) children: it
cannot happen that a clause has k literals (y 6= d) because the all-d is a satisfying assignment.

Suppose that v is an ancestor of u and var-label(v) = y. Since µ0(y) 6= d, it cannot happen
that clause-label(u) contains a clause that has literal (y 6= d) (otherwise this clause would be
satisfied). Therefore:

Observation 4.3. In T cx , no node has the same var-label as one of its proper ancestors.

This also implies that the height of the tree cannot exceed n, and thus the process terminates,
making T cx well-defined.

4.2.3 Critical trees and A(x, π,D)

As in section Section 2.2.4, we now consider π as a placement; the values π(x), called place of
x, are chosen independently at random from [0, 1] for each x ∈ U(α0).

Let γ ∈ [0, 1] and T cx be the critical clause tree for some variable T cx . We can use the same
definition as in Section 2.2.4 for reachable nodes: a node u ∈ T cx is reachable at time γ w.r.t. π
if there exists a path v0, v1, ..., vm such that v0 is th root of the tree, vm = u and π(vi) ≥ γ for
all i ≤ i ≤ m. Let us denote Reachable(T cx , γ, π) the set of all nodes in Tx reachable at time γ
w.r.t. π. Observe that this set is independent of the place of x.

We prove the following lemma, which is essentially the same argument as in the ppsz-weak
case:

Lemma 4.4. If we have |Reachable(T cx , π(x), π)| ≤ D, then it holds has well that F �D(d−1)
(x 6= c).

Proof. Let α′ be the restriction of α∗ = (d, d, ..., d) to the variables y ∈ (α0) with π(y) < π(x).
Let G = clause-label(Reachable(T cx , π(x), π)), i.e. the subformula of F consisting of the union
of all the clause labels sets of reachable nodes in T cx . Since by hypothesis |Reachable(T cx , π(x),
π)| ≤ D, each clause label contains at most (d− 1) clauses, then clearly |G| ≤ (d− 1)D.

Suppose that G does not imply (x 6= c). Then we can fix an assignment ν : V → [d]
which is compatible with α0 ∪ α′, which has ν(x) = c and which satisfies G. Choose a maximal
path in T cx , starting at the root, x, and containing only nodes v such that ν(var-label(v)) 6= d.
Since ν(x) = c, this path is non-empty. Let u be its endpoint. Since ν is compatible with
α∗ on all the variables before x, it must be that var-label(u) is either x itself or after x, and
hence π(var-label(u)) ≥ π(x) and so u is reachable, by definition. For all children z of u, we
have that ν(var-label(z)) = d (because the path is maximal); all ancestors y of u are such that
ν(var-label(y)) 6= d. By definition of T cx , all the clauses of the clause-label of u are unsatisfied
by ν and, since clause-label(u) ⊆ G, this is a contradiction.

It follows immediately from Lemma 4.4 that, over the uniform choice of π, we have

Pr
π

[c /∈ A(x, π,D)] ≥ Pr
π

[
|Reachable(T cx , π(x), π)]| ≤ D

d− 1

]
.

60

For 1 ≤ c ≤ d− 1, we define

Y(c) =

{
1 if |Reachable(T cx , π(x), π)| > D

d−1
0 otherwise

For c = d, we define Y(d) = 1. Finally, we define Y =
∑d
c=1 Y(c). We get the following lemma:

Lemma 4.5.
|A(x, π,D)| ≤ Y

Proof. For c = 1, ..., d−1, we know that Y(c) is 0 if and only if |Reachable(T cx , π(x), π)| ≤ D
d−1 , in

which case c /∈ A(x, π,D). Hence, if c ∈ A(x, π), then Y(c) = 1. Moreover, for c = d, we always
have d ∈ A(x, π,D).

This reduces the problem to a probabilistic calculation on trees: when sorting the nodes of
a set of trees according to a random permutation (caveat: some nodes have the same label and
are prescribed to get assigned the same place) and deleting all nodes whose place is after the
root, what is the expected number of trees that have more than D

d−1 nodes reachable?
The next sections aim at proving Theorem 4.1 and we will proceed in the following six

high-level steps:

1. We will first consider the random deletion in one infinite tree where all the nodes are
deleted independently with probability p.

2. We will then use this bound to get a bound for the case of random deletion in several trees
where all the nodes are deleted, again independently, with the same probability p.

3. We argue that if the trees are not infinite but not finite, the bound still holds.

4. We argue that the bound also holds if we introduce dependencies between the labelling of
different trees, while keeping the labelling of individual trees independent.

5. We argue that it still holds if we introduce dependencies between the nodes of a single tree.

6. We finally consider the case where p is not fixed anymore but the place of the root is also
random.

4.2.4 Random deletion in one infinite tree

In this section, we consider a set of (d − 1) infinite rooted full trees T c∞ of root degree (k − 1)
and of non-root degree (d−1)(k−1). Each non-root node of the trees T c∞ is deleted (along with
its subtree) independently of all other nodes with probability p; this yields the trees T c′.

For a given T c′ to be finite, each of the root’s children must be either deleted (which happens
with probability p), or the root of a finite tree of degree (d − 1)(k − 1), that we got by doing
random deletions in an infinite tree of degree (d− 1)(k − 1), whose root we do not delete.

We showed in Section 3.2.4 that the probability for that event is larger than R(d,k)(p), where
R(d,k)(p) is the smallest q satisfying the equation

q = (p+ (1− p) · q)(d−1)(k−1).

61

Lemma 4.6. Let T∞ be an infinite rooted full tree of root degree (k − 1) and of non-root
degree (d − 1)(k − 1). Consider the following random experiment: each non-root from T∞ is
deleted (along with its subtree) independently from all other nodes with probability p. Then the
probability that the resultant tree T ′ is of finite size is:

Pr[T ′ is finite] ≥ R̃(d,k)(p)

where
R̃(d,k)(p) = (p+ (1− p)R(d,k)(p))

(k−1).

Proof. Let yi be the ith child of the root of T∞ and let Qi be the subtree rooted at yi. Note that
what happens to yi is independent of what happens in Qi. Then we have:

Pr[T ′ is finite] = Pr

[
k−1∧
i=1

yi is deleted ∨ (yi is not deleted ∧Qi is finite)

]

≥
k−1∏
i=1

p+ (1− p)R(d,k)(p)

= (p+ (1− p)R(d,k)(p))
(k−1)

= R̃(d,k)(p)

4.2.5 From one tree to (d− 1) trees

So far, we have considered the deletion of nodes of a single tree. However, contrarily to the
3-SAT case and to the weak case, we are not interested, here, simply in whether the tree has a
bounded height, but we want to know how many of these trees have a bounded height. Back to
the original problem, we are interested in the quantity Eπ[log(|A(x, π,D)|)] where, as Lemma 4.5

implies, |A(x, π,D)| ≤ 1 +
∑d−1
c=1 Y(c).

In the following lemma, we suppose for the moment that the nodes are all deleted indepen-
dently of each other. We will then prove, in the following sections, that having non-independent
deletions can only help.

Lemma 4.7. Let {T c∞}(c∈[d−1]) be a set of infinite rooted full trees of root degree (k−1) and of
non-root degree (d− 1)(k − 1). Consider the following random experiment: each non-root from
every T c∞ is deleted (along with its subtree) independently from all other nodes with probability
p. We denote the resulting trees {T c′}. Then, if we define B as the set of infinite trees in {T c′}
after this random experiment, we have

E[logd(1 + |B|)] ≤
d−1∑
j=1

logd(1 + j)R̃(d,k)(p)
d−1−j(1− R̃(d,k)(p))

j .

Proof. We will use the following lemma, which we call the general lemma on expectation, and
which we prove in Appendix B.4. We need this lemma here because we have only a bound on
the probability that an arbitrary tree is finite: we know that it is greater than R̃(d,k)(p). Since
we are interested in the size of the set of the infinite trees, we will have to consider events with
probabilities less than 1−R̃(d,k)(p) as well, and these bounds do not allow us to conclude directly,
hence the use of the lemma.

62

Lemma 4.8. Let A be a finite set and let f : 2A → R be a function that satisfies f(B′) ≤ f(B),
∀B′ ⊆ B ⊆ A.

Let q′ : A→ [0, 1] and q : A→ [0, 1] be two functions that satisfy q′(a) ≤ q(a),∀a ∈ A.
At first, let Cq′ and Cq be the empty set. Now consider the two following random experiments:

1. ∀a ∈ A, choose a ∈ Cq′ with probability q′(a).

2. ∀a ∈ A, choose a ∈ Cq with probability q(a).

Note that the events are independent.
Then we have E[f(Cq′)] ≤ E[f(Cq)].

Now we consider A as the set of all possible infinite trees T c′ when proceeding to the ex-
periment of Lemma 4.6. We have proven in Lemma 4.6 that an arbitrary tree was finite with
probability greater than R̃(d,k)(p), and so an arbitrary tree is infinite with probability less than

1− R̃(d,k)(p).
To apply Lemma 4.8, we define q′ as the probability that an arbitrary tree is infinite, and

q = 1− R̃(d,k)(p) – so Cq′ = B, i.e the set of infinite trees T c′ when proceeding to the experiment
from Lemma 4.6. We also define f = logd(1 + |B|) for all B ⊆ A. Observe that f(B′) ≤ f(B)
for all B′ ⊆ B ⊆ A.

From Lemma 4.8, we then have

E[logd(1 + |B|)] = E[f(Cq′)] ≤ E[f(Cq)] = E[logd(1 + |Cq|)].

But then we have:

E[logd(1 + |Cq|)] =
∑
Cq⊆A

Pr[∀a ∈ Cq, a is picked ∧ ∀a /∈ Cq, a is not picked] logd(1 + |Cq|)

=

d−1∑
j=1

logd(1 + j)

(
d− 1

j

)
Pr[a is picked]j Pr[a is not picked]d−1−j

=

d−1∑
i=1

logd(1 + j)

(
d− 1

j

)
(1− R̃(d,k)(p))

jR̃(d,k)(p)
d−1−j ,

which concludes the proof.

4.2.6 From infinite to finite trees

We prove the following lemma:

Lemma 4.9. Let T c∞ be a set of infinite rooted full trees of root degree (k− 1) and of non-root
degree (d − 1)(k − 1). Consider the following random experiment: each non-root from every
T c∞ is deleted (along with its subtree) independently from all other nodes with probability p.
The resulting trees are denoted as T c′. Then, if we define BH as the set of trees in {T c∞} that
have a height greater than H after this experiment and B as the set of infinite trees after this
experiment, we have

lim
H→∞

E[logd(1 + |BH |)] = E[logd(1 + |B|)].

Proof. We have

E[logd(1 + |BH |)] =

d−1∑
j=0

Pr[|BH | = j] logd(1 + j),

63

so

lim
H→∞

E[logd(1 + |BH |)] =

d−1∑
j=0

logd(1 + j) lim
H→∞

Pr[|BH | = j].

Moreover,
Pr[|BH | = j] = Pr[|BH ≤ j|]− Pr[|BH | ≤ j − 1]

and, since the events |BH | ≤ j and Pr[|BH | ≤ j − 1] are monotonically increasing in H, we can
apply the monotone convergence theorem (see Appendix A.2). We have that limH→∞ |BH | = |B|,
so

lim
H→∞

Pr[|BH | ≤ j] = Pr[|B| ≤ j]

by the monotone convergence theorem, and similarly

lim
H→∞

Pr[|BH | ≤ j − 1] = Pr[|B| ≤ j − 1].

Putting everything together, we have

E[logd(1 + |BH |)] =

d−1∑
j=0

logd(1 + j)(Pr[|B| ≤ j]− Pr[|B| ≤ j − 1])

=

d−1∑
j=0

logd(1 + j) Pr[|B| = j]

= E[logd((1 + |B|)]

as desired.

We extend Lemma 4.7 to get the following lemma:

Lemma 4.10. There exists a sequence ε1(p), ε2(p), ...,∈ R+
0 of numbers depending only on p,

having εH(p)→ 0 for H →∞ such that the following holds. Let T c∞ be a set of infinite rooted full
trees of root degree (k−1) and of non-root degree (d−1)(k−1). Consider the following random
experiment: each non-root from every T c∞ is deleted (along with its subtree) independently from
all other nodes with probability p. The resulting trees are denoted as T c′. Then let BH be the
set of trees T c′ that have a height larger than H and B be the set of trees T c′ that have an
infinite height: we have

E[logd(1 + |BH |)] ≤ E[logd(1 + |B|)] + εH(p).

Proof. Define, for all H ≥ 1,

εH(p) := max{E[logd(1 + |BH |)]− E[logd(1 + |B|)], 0}

Then we find that
E[logd(1 + |BH |)] ≤ E[logd(1 + |B|)] + εH(p)

and, from Lemma 4.9,
lim
H→∞

εH(p) = 0.

64

Let us now consider any family of d− 1 finite (not necessary full) trees of root degree (k− 1)
and of non-root degree (k − 1)(d − 1), {T c}. Consider the following random experiment: each
non-root node from every tree of {T c} is deleted (along with its subtree independently from all
other nodes with probability p.

We can couple this experiment to a random experiment conducted on the family {T c∞}: the
family {T c} is embeddable into {T c∞} with every root from a tree from {T c} coinciding to a root
from a tree from {T c∞}. If we delete every node from the trees from {T c∞} with probability p,
the same experiment is taking place on {T c}. Let {T c′′} be the trees resulting from the deletions
in {T c∞} and {T c′} be the trees resulting from the deletions in {T c}. Since the trees T c′ are
subtrees of the trees T c′′, we have h(T c′) ≤ h(T c′′). If B′′H is the set of trees from {T c′′} that
have a height greater than H and B′H the set of trees from {T c′} that have a height greater than
H, we have

E[log(1 + |B′H |)] ≤ E[log(1 + |B′′H |)].
So any upper bound that we can establish on full, infinite trees, can also be applied to

non-full, finite trees.

4.2.7 From independent to dependent labels

As we did in the 3-SAT case and in the weak PPSZ case, we now want to remove the assumption
that the labels of the trees are independent. We will prove the following lemma:

Lemma 4.11. Let Z1, Z2, ..., Zr ∈ {0, 1} be mutually independent binary random variables,
each of which takes value 1 with probability p. Let T c be a set of (d − 1) finite (and not
necessarily full) trees of root degree k− 1 and of non-root degree (d− 1)(k− 1) with a labelling
σ : V (T c)\{root} → {1, ..., r} of the non-roots of the trees T c with indices that have the property
that, on each path from a root to a leaf, σ is injective. Consider the experiment of drawing Z1,
..., Zr according to their distribution and then deleting all nodes u from all trees T c (along with
their subtrees) for which Zσ(u) = 1. Call the resulting trees U c, and call JH the set of trees in
{U c} that have a height larger than H.

Juxtapose the experiment where in T c, the labelling (which we call σ′) has the additional
property that no two labels of two different trees are the same. Such a labelling can, for instance,
be achieved by replacing any label in σ that happens more than once by a set of labels that allow
to cover every corresponding nodes exactly once. Call the trees resulting from this experiment
T c′, and call KH the set of trees in {T c′} that have a height larger than H.

Finally, juxtapose the experiment where in T c, every non-root node is deleted independently
from all other nodes with probability p. Call the random trees resulting from this experiment
T c′′, and call LH the set of trees in {T c′′} that have a height larger than H.

Then we have, for any H:

E[log(1 + |JH |)] ≤ E[log(1 + |KH |)] ≤ E[log(1 + |LH |)].

Proof. We prove both inequalities one after the other. For the first inequality, we will use the
following lemma, which we prove in Appendix B.3:

Lemma 4.12. Let X,T, T ′, U, V be finite vectors of real random variables, all independent,
taking only finitely many values. Suppose T and T ′ are over Rn and have the same distribution.
Let f, g : Rn → R be monotonically increasing functions, and let h : R → R be a concave
function. Then

E[h(f(X,T, U) + g(X,T, V))] ≤ E[h(f(X,T, U) + g(X,T ′, V))].

65

In this lemma, we can think of the left hand side and the right hand side as two different,
but related, random experiments. The functions f and g are fed with random input. The vector
X represents shared random input (between both functions), U and V are individual random
input (for each function), and T and T ′ are random input that is shared in the first experiment
between f and g, but made independent in the second experiment.

Let us define the following variables:

Xc =

{
1 if h(U c) > H

0 otherwise

and

Yc =

{
1 if h(T c′) > H

0 otherwise

Observe that for all c ∈ [d− 1], Xc = 1 if and only if in U c there exists a node u at depth H + 1
such that all nodes from the root to u are labeled 1. Hence:

∀c ∈ [d− 1], Xc =
∨

p path in Uc from root
to node at depth H + 1

∧
u on p

Zσ(u)

=
∨

p path in T c′ from root
to node at depth H + 1

∧
u on p

Zσ(u)

where the equality inequality comes from the fact that U c and Tprime only differ from their
labelling, while their structure stays the same. Similarly,

∀c ∈ [d− 1], Yc =
∨

p path in T c′ from root
to node at depth H + 1

∧
u on p

Zσ′(u)

This implies that the functions Xc and Yc are monotonically increasing functions depending
on the Zi. Moreover, we have, by definition of KH and JH , that |KH | =

∑d−1
i=1 Yc and |JH | =∑d−1

i=1 Xc. Now we can apply Lemma 4.12 repeatedly. We start with

E[logd(1 + |JH |)] = E

[
logd

(
1 +

d−1∑
c=1

Yc

)]

= E

[
logd

(
1 + Y1 +

d−1∑
c=2

Yc

)]

= E

logd

1 +
∨

p path in T 1′

∧
u on p

Zσ′(u) +

d−1∑
c=2

∨
p path in T c′

∧
u on p

Zσ′(u)


Applying the notations of Lemma 4.12, in the first step, X is empty; T is the vector of the Zi that
appear both in Y1 and in some other Yc; T

′ is an independent vector of values of the same size as
T ; U is the vector of the Zi that only appear in Y1, V is the vector of the Zi that do not appear
in Y1. f and g are functions of the Zi such that f(X,T, V) =

∑d−1
c=2 Yc and g(X,T, U) = Y1.

We have observed that the Yc were monotonically increasing functions of the Zi; f and g are
consequently monotonically increasing functions as well. The function h is h : t 7→ log(1 + t),
which is concave. h is not a function R 7→ R, but we can define a concave function defined on
all R that agrees with h on [1,∞).

66

By Lemma 4.12, we can then write

E

logd

1 +
∨

p path in T 1′

∧
u on p

Zσ′(u) +

d−1∑
c=2

∨
p path in T c′

∧
u on p

Zσ′(u)


≤ E

logd

1 +
∨

p path in T 1′

∧
u on p

Zσ(u) +

d−1∑
c=2

∨
p path in T c′

∧
u on p

Zσ′(u)


We then apply Lemma 4.12 repeatedly. For an arbitrary step t, X is the vector of the Zi that
appear in X1 to Xt−1; T is the vector of the Zi that appear both in Yt and in some other Yc,
c > t; T ′ is an independent vector of values of the same size as T ; U is the vector of the Zi that
only appear in Yt, V is the vector of the Zi that do not appear in Yt. f and g are functions of
the Zi such that f(X,T, V) =

∑d−1
c=t+1 Yc and g(X,T, U) = Yt +

∑t−1
c=1Xc. Then we write:

E

logd

1 +

t−1∑
c=1

Xc +
∨

p path in T t′

∧
u on p

Zσ′(u) +

d−1∑
c=t+1

∨
p path in T c′

∧
u on p

Zσ′(u)


≤ E

logd

1 +

t−1∑
c=1

Xc +
∨

p path in T t′

∧
u on p

Zσ(u) +

d−1∑
c=2

∨
p path in T c′

∧
u on p

Zσ′(u)


At the end of this procedure, we get

E[logd(1 + |JH |)] = E[logd(1 +

d−1∑
c=1

Yc)] ≤ E[log(1 +

d−1∑
c=1

Xc] = E[logd(1 + |KH |)]

which proves the first inequality.
The second inequality is a direct consequence of Lemma 4.8, or general lemma on expectation

(see Appendix B.4).
We pick as A the set of all trees T c, and as f the function f : B 7→ E[logd(1 + |B|)]. We

pick the trees from T c with the probabilities Pr[T c ∈ KH] and Pr[T c ∈ LH]. If we prove that
Pr[T c ∈ KH] ≤ Pr[T c ∈ LH], then by Lemma 4.12 E[logd(1 + |KH |)] ≤ E[logd(1 + |LH |)]. So it
remains to prove that Pr[T c ∈ KH] ≤ Pr[T c ∈ LH].

For this, we can simply apply Lemma 3.12 from the weak PPSZ case. We are in the case of a
finite, non-full tree of degree (d− 1)(k− 1) (in particular, our tree has root degree (k− 1)), and
the experiment is exactly the one from Lemma 3.12. Hence, the argument of the lemma applies
and Pr[T c ∈ KH] ≤ Pr[T c ∈ LH], which concludes our proof.

4.2.8 Integrating over the rank of the root

We have proven, in the previous sections, that, for a fixed p,

E[logd(1 + |JH |) | π(x) = p] ≤
d−1∑
j=1

((
d− 1

j

)
logd(1 + j)R̃(d,k)(p)

d−1−j(1− R̃(d,k)(p))
j

)
+ εH(p)

where JH is defined as in Lemma 4.11

R̃(d,k)(p) = (p+ (1− p)R(d,k)(p))
k−1

67

and where, in turn, R(d,k)(p) has been defined in the previous chapter as the smallest q ≥ 0
satisfying the equation

q = (p+ (1− p) · q)(d−1)(k−1).
To get rid of the conditioning on p, we want, as usual, to integrate our expression on all

possible values of p, which would yield

E[logd(1+ |JH |)] ≤
∫ 1

0

d−1∑
j=1

((
d− 1

j

)
logd(1 + j)R̃(d,k)(p)

d−1−j(1− R̃(d,k)(p))
j

)
+ εH(p)

 dp

Moreover, we are interested in the behavior of this expression as H tends to the infinity.
For this, we want to apply the dominated convergence theorem. The dominated convergence
theorem is a classical result of integration theory and we state it here:

Theorem 4.13 (Dominated convergence theorem [1]). Let {fn} be a sequence of real-valued
measurable functions on a measure space (S, µ). Suppose that the sequence converges pointwise
to a function f and is dominated by some integrable function g in the sense that |fn(x)| ≤ g(x)
for all numbers n in the index set of the sequence and all points x ∈ S. Then f is integrable and

lim
n→∞

∫
S

fn dµ =

∫
S

f dµ.

We have that, for all p,

lim
H→∞

d−1∑
j=1

((
d− 1

j

)
logd(1 + j)R̃(d,k)(p)

d−1−j(1− R̃(d,k)(p))
j

)
+ εH(p)

=

d−1∑
j=1

((
d− 1

j

)
logd(1 + j)R̃(d,k)(p)

d−1−j(1− R̃(d,k)(p))
j

)
.

Moreover,
∑d−1
j=1

(
logd(1 + j)R̃(d,k)(p)

d−1−j(1− R̃(d,k)(p))
j
)

is bounded by a constant, since

R(d,k) is, and so R̃(d,k) is as well, and εH(p) is bounded by 1 (because, in logd(1 + |B|), B
has size at most d − 1). So the whole expression is bounded by a constant. Consequently, we
can apply the dominated convergence theorem, and we are now working with the expression∫ 1

0

d−1∑
j=1

((
d− 1

j

)
logd(1 + j)R̃(d,k)(p)

d−1−j(1− R̃(d,k)(p))
j

)
dp

=

d−1∑
j=1

(
d− 1

j

)
logd(1 + j)

∫ 1

0

R̃(d,k)(p)
d−1−j(1− R̃(d,k)(p))

j dp

As before, R̃(d,k) is not given explicitely. We will prove the following lemma:

Lemma 4.14. For p ∈
[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
, we have R̃(d,k)(p) = 1.

For p ∈
[
0, (d−1)(k−1)−1(d−1)(k−1)

]
, R̃(d,k) is a strictly monotone growing function of p.

Proof. We have shown in Lemma 3.14 that, for p ∈
[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
, we have R(d,k)(p) = 1.

By definition of R̃(d,k), we have that R̃(d,k)(p) = R(d,k)(p)
1
d−1 and therefore the first statement

holds. Lemma 3.14 also implies that R(d,k) is a strictly monotone growing function for p ∈[
0, (d−1)(k−1)−1(d−1)(k−1)

]
to [0, 1], and hence so is R̃(d,k).

68

On the interval
[
0, (d−1)(k−1)−1(d−1)(k−1)

]
, we can find an inverse function R̃−1(d,k) mapping [0, 1] to[

0, (d−1)(k−1)−1(d−1)(k−1)

]
.

Lemma 4.15.

R−1(d,k)(s) =
s

1
k−1 − sd−1
1− sd−1 .

Proof. From Lemma 3.14, we know that the inverse function of R(d,k) on the interval[
0, (d−1)(k−1)−1(d−1)(k−1)

]
is R−1(d,k)(s) = s

1
(d−1)(k−1)−s

1−s . Since R̃(d,k)(p) = R(d,k)(p)
1/d−1 we have

R̃−1(d,k)(s) = R−1(d,k)(s
d−1) =

s
1
k−1 − sd−1
1− sd−1 .

We define hj : [0, 1]→ [0, 1] where hj(p) = td−1−j(1− t)j . Hence, our integral can be written
as ∫ 1

0

R̃(d,k)(p)
d−1−j(1− R̃(d,k))

j dp =

∫ 1

0

hj(R̃(d,k)(p)) dp.

We will finally use the following lemma:

Lemma 4.16. ∫ 1

0

hj(R̃(d,k)(p)) dp =

∫ 1

0

hj(s)(R̃
−1)′(s) ds.

Proof. We use again the following substitution of Lemma 3.16, which we recall here:

Lemma 3.16. Let f : I → R be a continuous function and φ : [a, b] → R a continuous
differentiable function where φ([a, b]) ⊂ I. Then we have∫ b

a

f(φ(t))φ′(t)dt =

∫ φ(b)

φ(a)

f(x) dx.

Now, we have that R̃−1 is only defined if R̃ is restricted to
[
0, (d−1)(k−1)−1(d−1)(k−1)

]
, we first have to

split up our integral. For j > 0, we have∫ 1

0

hj(R̃(d,k)(p)) dp =

∫ (d−1)(k−1)−1
(d−1)(k−1)

0

hj(R̃(d,k)(p)) dp+

∫ 1

(d−1)(k−1)−1
(d−1)(k−1)

hj(R̃(d,k)(p)) dp

=

∫ (d−1)(k−1)−1
(d−1)(k−1)

0

hj(R̃(d,k)(p)) dp,

where the last equation follows since R̃(d,k)(p) = 1 on
[
(d−1)(k−1)−1
(d−1)(k−1) , 1

]
and hj(1) = 0. Now we

use our substitution rule and replace f and φ by h ◦ R̃ and R̃−1 respectively. The preconditions
hold for p < 1 and therefore we have∫ 1

0

hj(R̃(p)) dp = lim
ε→0

∫ R̃−1(1)−ε

R̃−1(0)

h(R̃(R̃−1(s)))(R̃−1)′(s) ds

= lim
ε→0

∫ 1−ε

0

hj(s)(R̃
−1)′(s) ds

=

∫ 1

0

hj(s)(R̃
−1)′(s) ds

69

To wrap up, we have that∫ 1

0

R̃(d,k)(p)
d−1−j(1− R̃(d,k)(p))

j dp =

∫ 1

0

sd−1−j(1− s)j(R̃−1)′(s) ds

and

R̃−1(d,k)(s) =
s

1
k−1 − sd−1
1− sd−1

which yields ∫ 1

0

R̃(d,k)(p)
d−1−j(1− R̃(d,k)(p))

j dp

= lim
ε→0

∫ 1−ε

0

sd−1−j(1− s)j

·
(1− sd−1)(1

k−1s
1
k−1−1 − (d− 1)sd−2) + (s

1
k−1 − sd−1)(d− 1)s(d−2)

(1− sd−1)2
ds.

And this concludes the proof of Theorem 4.1.

4.2.9 Summary

To prove Theorem 4.1, we went through the following steps:

1. We related the probability of success of the strong PPSZ algorithm to the expected size of
the set of “non-forbidden” elements at each step (the sets A(x, π,D)).

2. We related the size of this set to the expected number of trees that exceed a given size
after we apply some random cuts with a given probability to a set of trees

3. We considered the case where these trees are full, infinite, and where the cuts are done
independently, and we proved that this was the worst possible case for the size of the set
of “large” trees.

4. We integrated the result to get the final result for any variable, independently of its place.

4.3 Multiple satisfying assignments

In the previous section, we have proven Theorem 4.1, which deals with the case where F has
a unique assignment. In general, though, we cannot rely on such a strong assumption, and we
would like to prove the following:

Conjecture 4.17. For any (d, k)-ClSP formula F on n variables V , ppsz-strong(F, V, α0,
log log n) returns some assignment with probability Ω(d−S(d,k)n−o(n)), where

S(d,k) =

d−1∑
j=0

(
d− 1

j

)
logd(1 + j)

·
∫ 1

0

sd−1−j(1− s)j ·
(1− sd−1)(1

k−1s
1
k−1−1 − (d− 1)sd−2) + (s

1
k−1 − sd−1)(d− 1)s(d−2)

(1− sd−1)2
ds.

70

This conjecture is not fully proven yet, but we give some elements towards the proof that
follow the structure established in Chapter 2: we will define a cost function, and relate it to
the probability of success of ppsz-strong. The main difference is that our success probability
does not depend on the probability that a variable is guessed (as in the 3-SAT case or in the
ppsz-weak case), but on the quantity E[logd(|A(x, α0, α, π,D)|], where we defined A(x, α0, α,
π,D) to be the set {c ∈ [d] | F [α0∪β] 2D (x 6= c)}. Consider a fixed satisfying assignment α.
Observe that, for a fixed placement π, the probability that the algorithm returns α when starting
in state α0 is

Pr[ppsz-strong(F, V, α0, D, π) returns α] =
∏

x∈U(α0)

1

|A(x, α0, α, π,D)|

which yields, for a placement π chosen uniformly at random:

Pr[ppsz-strong(F, V, α0, D, π) returns α] = E

 ∏
x∈U(α0)

1

|A(x, α0, α, π,D)|


Applying Jensen’s inequality with the function x 7→ d−x as the convex function yields

E

 ∏
x∈U(α0)

1

|A(x, α0, α, π,D)|

 ≥ d−∑x∈U(α0) E[logd |A(x,α0,α,π,D)|].

In the unique case, we have shown that E[logd |A(x, α0, α, π,D)|] ≤ S(d,k), which proved the
theorem. But as in the 3-SAT case and in the ppsz-weak case, the analysis of the unique
case does not go through in the general case because there is no guarantee that we can build
critical clause trees for the formula. If a given variable has the same value in all the satisfying
assignments, we call this variable “frozen”. In that case, the argument goes through, and we
can state the following lemma:

Lemma 4.18. Let F be a (d, k)-ClSP formula and x be a frozen variable. Let furthermore α
be any satisfying assignment, and α0 be a partial assignment compatible with α. Then

E[logd(|A(x, α0, α, π,D)|)] ≤ S(D)
(d,k).

4.3.1 Definition of a cost function

We proceed again as in the 3-SAT case and as in the ppsz-weak case. We want to define a

cost function that is bounded by S
(D)
(d,k). To lighten the notation, we will, from now on, consider

that D = log log n and we will define S
(D)
(d,k) = S(d,k). The intuition is, however, slightly different

from the previous cases. In the previous cases, we were only interested in whether a variable
was forced or not. Here, we want to know at which degree a variable is forced. Hence, instead of
evaluating the probability (over the permutations and the previous choices of assignments) that
a given variable has only one possible value (i.e. is forced), we want to evaluate the expected
number of possible values, and we want our cost value to encompass that.

Let us recall the following definition:

Definition 4.2. For every variable x, every total assignment α, every partial assignment α0

compatible with α, every integer D, and every permutation π, we define the sets A(x, α0, α, π,
D) as follows:

A(x, α0, α, π,D) = {c ∈ [d] | F [α0∪β]] 2D (x 6= c)}

71

where β is the partial assignment corresponding to the restriction of α to the variables that come
before x in π.

For a fixed total assignment α and a partial assignment α0, we now define

bits(x, α0, α,D) = E
π

log[|A(x, α0, α, π)|].

From this definition, we define the cost function directly:

cost(α0, α, x) =


0 if x /∈ U(α0)

0 if x ∈ Vfo(α0)

S(d,k) if x ∈ Vnf(α0)

bits(x, α0, α,D) if x ∈ Vfr(α0)

As in the previous cases, we also introduce the likelihood of a given assignment as follows:

Definition 2.17. Let F [α0] be satisfiable and let Sα0
be the set of value assignments l = {x 7→ b}

such that x ∈ U(α0) and F [α0[l]] is satisfiable.
We define the random process AssignSL(F, α0) that produces an assignment on vbl(F) as

follows. Start with the assignment α0, and repeat the following step until vbl(F [α0]) = ∅: Choose
a value assignment l ∈ Sα0 uniformly at random and add l to α0. At the end, output α0.

Let α be a total assignment on vbl(F). Then the likelihood of completing α0 to α, in writing
lkhd(α0, α) is defined as the probability that AssignSL(F, α0) returns α. For completeness, if
F [α0] is not satisfiable, we define lkhd(α0, α) = 0.

This definition allows us to define a cost function corresponding to the cost of a variable
when completing a given partial assignment α0 to any satisfying assignment:

cost(α0, x) =
∑

α∈satV (F)

lkhd(α0, α) · cost(α0, α, x) =
∑

α∈satV (F)

wcost(α0, α, x)

Finally, we define the cost of completing a given partial assignment to any satisfying assign-
ment by summing over all variables:

cost(α0) =
∑
x∈V

cost(α0, x).

We would like to prove the following conjecture:

Conjecture 4.19. Let α0 be such that F [α0] is satisfiable. Then the overall probability of
ppsz-strong to output some satisfying assignment when starting in state α0 is at least d−cost(α0).

Observe the following:

Observation 4.20. For any α0, α, x, we have cost(α0, α, x) ≤ S(d,k). Furthermore, cost(α0) ≤
n(α0)S(d,k).

This observation follows directly from the definition of the cost and from Lemma 4.18. Prov-
ing Conjecture 4.19 would allow us to conclude directly that Conjecture 4.17 holds as well.

72

4.3.2 Towards the proof of Conjecture 4.19

Setup of the proof of Conjecture 4.19

We first define p(α0) as the probability that ppsz-strong outputs some satisfying assignment
when starting from state α0.

We define the set Sα0
as follows:

Sα0
:= {(x, c) ∈ U(α0)× [d] | F [α0∪{x7→c}] is satisfiable}

and the set Sα0(x), for every x ∈ U(α0), as

Sα0
(x) := {(x, c) ∈ {x} × [d] | F [α0∪{x 7→c}] is satisfiable}.

The set Sα0
represents all the choices that the ppsz-strong run can do and still have a

satisfying formula in the next step. The set Sα0 contains at least 2|Vnf(α0)|+|Vfo(α0)|+|Vfr(α0)|
elements.

We would like to be able to prove Conjecture 4.19 by induction, as we did in the 3-SAT case
and in the ppsz-weak case. We suppose that the claim holds for all α0 that fix a larger number
of variables. If α0 is total, then the statement holds trivially, because the cost of α0 is 0, and
p(α0) = 1.

Let x and c be random variables: x ∈ U(α0) and c is the value chosen u.a.r. in the set of
allowed values for x (i.e. such that (x 6= c) is not D−implied by F [α0]), which we denote from
now on for ease of writing as A(x, α0). Then we have

p(α0) = E
x∈u.a.r.U(α0)

[p(α0 ∪ {x 7→ c})].

Relating to uniform choice over Sα0

As we did in the 3-SAT case and in the ppsz-weak case, we relate the probability distribution
over “x, then c” to the distribution uniformly at random over Sα0 . However, in the previous cases,
we could split the variables into frozen, forced and non frozen, and have constant probabilities
for all these classes of variables. Here, whatever the class of the variable, we have, for each
variable x, a probability that depends on |A(x, α0)| to pick a valid choice for c. Hence, we use
another approach to relate the above probability to the uniform choice over assignments in Sα0 .

We have:

p(α0) = E
x∈u.a.r.U(α0)

[p(α0 ∪ {x 7→ c})]

=
1

n(α0)

∑
x∈U(α0)

1

|A(x, α0)|
∑

c∈A(x,α0)

p(α0[x 7→ c])

=
1

n(α0)

∑
x∈U(α0)

1

|A(x, α0)|
∑

l∈Sα0
(x)

p(α0[l]).

This last equality comes from the fact that Sα0(x) ⊆ A(x, α0) and, if l /∈ Sα0(x), then p(α0[l]) =
0. We can now sum over all of Sα0 :

p(α0) =
1

n(α0)

∑
l∈Sα0

1

|A(vbl(l), α0)|p(α0[l])

=
|Sα0 |
n(α0)

1

|Sα0
|
∑
l∈Sα0

1

|A(vbl(l), α0)|p(α0[l])

=
|Sα0 |
n(α0)

E
l∈u.a.rSα0

[
1

|A(vbl(l), α0)|p(α0[l])

]
.

73

Using the induction hypothesis

We have now expressed p(α0) in terms of an expectation that depends on the uniform choice
over the possible literal in Sα0 . We first use Jensen’s inequality:

p(α0) ≥ dlogd
(|Sα0

|
n(α0)

)
+E[− logd(|A(vbl(l),α0)|p(α0[l]))]

and then we apply the induction hypothesis and the linearity of expectation, which yields

p(α0) ≥ dlogd
(|Sα0 |
n(α0)

)
−E[logd(A(vbl(l),α0)]−E[cost(α0[l])].

We are interested in the quantity

L := logd

(|Sα0
|

n(α0)

)
− E[logd |A(vbl(l), α0)|]− E[cost(α0[l])] + cost(α0) (4.1)

and we want to prove that it is non-negative, which would then prove that Conjecture 4.19 holds.
For this, we need to evaluate E[cost(α0[l])], for which we need to establish a few facts about cost
and likelihood, in a manner very similar to Lemma 3.21.

Proof.

We can now prove the following facts about cost and likelihood.

Lemma 4.21. Let α0 and α be fixed and compatible. For any fixed variable x ∈ U(α0), if we
set x according to α, then

(i) the likelihood of α can only increase, i.e.

lkhd(α0 ∪ {x 7→ α(x)}, α) ≥ lkhd(α0, α).

(ii) the cost of a fixed variable y ∈ V w.r.t. α can only decrease, i.e.

cost(α0 ∪ {x 7→ α(x)}) ≤ cost(α0, α, y).

When choosing x ∈ U(α0) uniformly at random and setting it according to α, then

(iii) the likelihood of α increases on average as

E[lkhd(α0 ∪ {x 7→ α(x)}, α)] =
|Sα0
|

n(α0)
lkhd(α0, α).

(iv) the cost of a fixed, frozen, non-forced variable y ∈ Vfr(α0) decreases on expectation as

E[cost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ cost(α0, α, y)− 1

n(α0)
logd |A(y, α0)|.

Proof. We adapt the proof of Lemma 3.21 to the ppsz-strong case; the arguments are identical
for the likelihood ((i) and (iii)), and differ slightly for the cost ((ii) and (iv)) part of the lemma.

74

(i) We prove the claim by induction over the size of α0. The claim holds trivially if α0 is a
complete assignment. Otherwise, we have

lkhd(α0, α) = E
(x′,c′)∈Sα0

lkhd(α0 ∪ {x′ 7→ c′}, α)

=
∑

(x′,c′)∈Sα0

1

|Sα0
| lkhd(α0 ∪ {x′ 7→ c′}, α)

=
∑

x′∈U(α0)

1

|Sα0
| lkhd(α0 ∪ {x′ 7→ α(x′)}, α)

=
1

|Sα0
|

lkhd(α0 ∪ {x 7→ α(x)}, α) +
∑

x′∈U(α0)\{x}

lkhd(α0 ∪ {x′ 7→ α(x′)}, α)

 .

We apply the induction hypothesis and we get

lkhd(α0, α) ≤ 1

|Sα0 |

lkhd(α0 ∪ {x 7→ α(x)}, α)

+
∑

x′∈U(α0)\{x}

lkhd(α0 ∪ {x′ 7→ α(x′)} ∪ {x 7→ α(x)}, α)


=

1

|Sα0
|
(
lkhd(α0 ∪ {x 7→ α(x)}, α)

+ |Sα0∪{x7→α(x)}|lkhd(α0 ∪ {x 7→ α(x)}, α)
)
.

Now observe that, since Sα0∪{x 7→c} (Sα0
, then |Sα0∪{x7→c}| ≤ |Sα0

| − 1, and this allows
us to conclude that

lkhd(α0, α) ≤ lkhd(α0 ∪ {x 7→ α(x)}).

(ii) We consider the three cases: the variable y is non frozen, frozen or forced. Note that if
x = y, the statement holds trivially.

If y ∈ Vnf(α0), then cost(α0, α, y) = S(d,k). Since the cost of a variable is always less than
S(d,k), the statement holds.

If y ∈ Vfr(α0) or y ∈ Vfo(α0), then cost(α0, α, y) is the expected logarithm of the number
of non-forbidden values for y in the remainder of the ppsz-strong run. If we now fix
another variable x to α(x), then this expectation cannot decrease, because adding a value
assignment cannot allow a value that was forbidden. So cost(α0 ∪ {x 7→ α(x)}, α, y) ≤
cost(α0, α, y).

(iii) We have

lkhd(α0, α) =
∑

(x,c)∈Sα0

1

|Sα0
| lkhd(α0 ∪ {x 7→ c}, α)

=
∑

x∈U(α0)

1

|Sα0
| lkhd(α0 ∪ {x 7→ α(x)}, α)

=
n(α0)

|Sα0
| E
x∈u.a.rU(α0)

[lkhd(α0 ∪ {x 7→ α(x)}, α)],

which proves the statement.

75

(iv) For a fixed, frozen, non-forced variable, we have that cost(α0, α, y) = bits(y, α0, α,D). Let
π be a random permutation on V and let z be the variable that comes next (after α0 has
been assigned) in π. By the law of total probability, we have that

bits(y, α0, α,D) = E
z
[E
π

[logd |A(y, α0, α, π,D)|] | z first in π].

If y = z, then the expression in the expectation is logd |A(y, α0)|. If y 6= z, then the
expression in the expectation is bits(y, α0 ∪ {z 7→ α[z]}, α,D), and thus

bits(y, α0, α,D) =
1

n(α0)
logd |A(y, α0)|+ 1

n(α0)

∑
z∈U(α0)\{y}

bits(y, α0 ∪ {z 7→ α[z]}, α,D).

But then, bits(y, α0 ∪ {y 7→ α(y)}, α,D) = 0 so

bits(y, α0, α,D) =
1

n(α0)
logd |A(y, α0)|+ 1

n(α0)

∑
x∈U(α0)

bits(y, α0 ∪ {x 7→ α(x)}, α,D),

which yields

E[cost(y, α0 ∪ {x 7→ α(x)}, α)] = cost(y, α0, α)− 1

n(α0)
logd |A(y, α0)|

as desired.

Now we can evaluate E[cost(α0[l])].

Evaluating E[cost(α0[l])]

In this section, we will prove the following lemma:

Lemma 4.22. If l ∈ Sα0
is selected uniformly at random, then

E[cost(α0[l])] ≤ cost(α0)− 1

|Sα0
|

 ∑
x∈Vfr(α0)

logd |A(α0, x)|+ S(d,k)

∑
x∈Vnf(α0)

|Sα0(x)|

 .

To prove this lemma, we will need the following auxilliary lemma:

Lemma 4.23. Let α be a fixed satisfying assignment and α0 ⊆ α. Let y ∈ Vfr(α0) be a fixed
frozen variable. If we select x ∈ U(α0) uniformly at random and assign it according to α, then

E[wcost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ wcost(α0, α, y) · |Sα0
|

n(α0)
− lkhd(α0)

n(α0)

Proof. We use, as in the previous cases, Lemma 2.24 (proven in Appendix B.2.1, which we recall
here:

Lemma 2.24. Let A,B ∈ R be random variables and a, b, ā, b̄ ∈ R fixed numbers such that
A ≥ a and B ≤ b always, and E[A] = ā and E[B] = b̄. Then

E[A ·B] ≤ ab̄+ bā− ab.

76

We have that wcost(α0∪{x 7→ α(x)}, α, y) = lkhd(α0∪{x 7→ α(x)}, α)·cost(α0∪{x 7→ α(x)},
α, y), so we define A = lkhd(α0 ∪ {x 7→ α(x)}, α) and B = cost(α0 ∪ {x 7→ α(x)}, α, y). Using

Lemma 4.21, we define a = lkhd(α0, α), ā =
|Sα0 |
n(α0)

lkhd(α0, α), b = cost(α0, α, y) and b̄ = cost(α0,

α, y)− logd |A(y,α0)|
n(α0)

. Applying our correlation inequality, we deduce that, for y ∈ Vfr(α0), when

selecting x ∈ U(α0) u.a.r. and assigning it according to α, we have

E[wcost(α0 ∪ {x 7→ α(x)}, α, y)]

≤ lkhd(α0, α)

(
cost(α0, α, y)− logd |A(y, α0)|

n(α0)

)
+ cost(α0, α, y)

|Sα0 |
n(α0)

lkhd(α0, α)

−lkhd(α0)cost(α0, α, y)

= wcost(α0, α, y)
|Sα0
|

n(α0)
− logd |A(y, α0)| · lkhd(α0, α)

n(α0)

We can now prove Lemma 4.22.

Proof of Lemma 4.22. We analyze the cost decrease contribution of the different types of vari-
ables separately. Each variable that is forced in state α0 contributes zero cost both before and
after the step.

For a non-frozen variable y ∈ Vnf(α0), note that Sα0
contains |Sα0

(y)| pairs containing y, so
with probability |Sα0

(y)|/|Sα0
|, a pair featuring y is selected. In that case, the cost contribution

of y drops from S(d,k) in all assignments. No matter what happens to these costs otherwise
(they certainly cannot increase by definition), the non-frozen variables hence contribute to the
last term of the claimed inequality.

Now consider the frozen variables. Let l = (x, c). If we fix some satisfying and α0-compatible
assignment α ∈ [d]V , and condition the experiment on the event that α(x) = c, then x becomes
uniformly at random among U(α0) because Sα0

contains exactly one pair (x′, c′) per variable
x′ ∈ U(α0) such that α(x′) = c′. Now we can apply directly Lemma 4.23 and find that,
conditioning on α(X) = C, the cost of each frozen variable drops on average as

E[wcost(α[l], α, y) | α(x) = c] ≤ wcost(α0, α, y) · |Sα0
|

n(α0)
− logd |A(y, α0)|.lkhd(α0, α)

n(α0)
.

The condition itself is satisfied with probability n(α0)/|Sα0
|. If it does not apply, then the

cost contribution of α drops to zero altogether. Therefore, the unconditional change can be
obtained by multiplying the right-hand side by n(α0)/|Sα0 |, which then yields

E[wcost(α0[l], α, y)] ≤ wcost(α0, α, y)− logd |A(y, α0)|.lkhd(α0, α)

|Sα0
| .

If we sum over all assignments α ∈ [d]V and all the variables, the claim follows.

77

Putting everything together

We are back to the main track of the proof of Conjecture 4.19, and we can now introduce the
result from Lemma 4.22 into equation (4.1). We obtain, cancelling cost(α0):

L = logd

(|Sα0
|

n(α0)

)
− E[logd |A(vbl(l), α0)|]− E[cost(α0[l])] + cost(α0)

≥ logd

(|Sα0 |
n(α0)

)
− E[logd |A(vbl(l), α0)|]

+
1

|Sα0 |

 ∑
x∈Vfr(α0)

logd |A(x, α0)|+ S(d,k)

∑
x∈Vnf(α0)

|Sα0
(x)|

 .

Furthermore, we have

E[log |A(vbl(l), α0)|] =
1

|Sα0
|

 ∑
l∈Sα0

logd |A(vbl(l), α0)|


≤ 1

|Sα0
|

 ∑
x∈Vfr(α0)

logd |A(x, α0)|+
∑

x∈Vnf(F)

|Sα0(x)|

 ,

and therefore we can conclude that

L ≥ logd

(|Sα0
|

n(α0)

)
+

1

|Sα0 |
(S(d,k) − 1)

∑
x∈Vnf(α0)

|Sα0(x)|.

Now we know that

Sα0
= |Vfo(α0)|+ |Vfr(α0)|+

∑
x∈Vnf(α0)

|Sα0(x)| = n(α0) +
∑

x∈Vnf(α0)

(|Sα0(x)| − 1)

so

L ≥ logd

(
1 +

∑
x∈Vnf(α0)

(|Sα0
(x)| − 1)

n(α0)

)
− 1

|Sα0
|

(1− S(d,k)

∑
x∈Vnf(α0)

|Sα0(x)|

 .

We now use the inequality logd(1 + x) ≥ logd(e)
x

1+x (proven in Appendix B.1.1) to get that

L ≥ logd(e)

∑
x∈Vnf(α0)(|Sα0 (x)|−1)

n(α0)

|Sα0
|

n(α0)

− 1

|Sα0
|

(1− S(d,k))
∑

x∈Vnf(α0)

|Sα0
(x)|


=

1

|Sα0
|

logd(e)
∑

x∈Vnf(α0)

(|Sα0
(x)| − 1)− (1− S(d,k))

∑
x∈Vnf(α0)

|Sα0
(x)|


=

1

|Sα0 |
∑

x∈Vnf(α0)

(
logd(e)(|Sα0(x)| − 1)− (1− S(d,k))|Sα0(x)|

)
Hence, if we show that, for x ∈ Vnf(α0), we have

logd(e)(|Sα0
(x)| − 1)− (1− S(d,k))|Sα0

(x)| ≥ 0,

78

this would prove that L ≥ 0 and hence Conjecture 4.19. In order to show that the theorem holds

for arbitrary d, since
|Sα0

(x)|
|Sα0 (x)|−1

≤ 2, this is given if

S(d,k) ≥ 1− logd e

2
.

From the definition of S(d,k), it can be seen that S(d,k) increases for larger k. Hence, S(d,k) ≥
S(d,3). We have the following numerical values: S(3,3) ≈ 0.584497273; log3(e) ≈ 0.910239;
S(4,3) ≈ 0.654828537; log4(e) ≈ 0.721347. This allows us to conclude that this is the case for
d = 3 and d = 4, which we summarize in the following theorem:

Theorem 4.24. For any (d, 3)-ClSP or (d, 4)-ClSP formula F on n variables V , ppsz-strong(F,
V, α0, log log n) returns this assignment with probability Ω(d−S(d,k)n−o(n)), where

S(d,k) =

d−1∑
j=0

(
d− 1

j

)
logd(1 + j)

·
∫ 1

0

sd−1−j(1− s)j ·
(1− sd−1)(1

k−1s
1
k−1−1 − (d− 1)sd−2) + (s

1
k−1 − sd−1)(d− 1)s(d−2)

(1− sd−1)2
ds.

The proof of the general claim of Conjecture 4.19 is still open.

79

Appendix A

Glossary of classical notions

The results of this section are well-known result of analysis and probability theory. The formu-
lation and proofs that we give here are the ones given in [8].

A.1 Jensen’s inequality

Theorem A.1. Let I be a real interval. If f : I → R is a convex function and X is a random
variable that attains values in I only, then

E[f(X)] ≥ f(E[X]),

provided that both expectations exist.

Proof. Let µ = E[X]. Let λ be such that f(x) ≥ f(µ) + λ(x− µ) for all x ∈ I. λ exists because
f is convex. Due to linearity of expectation,

E[f(X)] ≥ E[f(µ) + λ(X − µ)] = f(µ) + λ(E[X]− µ) = f(µ) = f(E[X]),

and we are done.

A.2 Monotone convergence theorem

Theorem A.2 (Monotone Convergence Theorem). Let, in a discrete probability space, B1, B2,
... be an infinite sequence of events such that Bi ⊇ Bi+1 for all i ≥ 1. Then we have

lim
n→∞

Pr[Bn] = Pr

[∞⋂
i=1

Bi

]
.

Proof. We write
∞⋂
i=1

Bi = B1\
∞⋃̇
i=1

(Bi\Bi+1).

Since the union is disjoint and moreover contained in B1, this implies

Pr

[∞⋂
i=1

Bi

]
= Pr[B1]−

∞∑
i=1

Pr[Bi\Bi+1].

80

By definition, the infinite sum on the right hand-side is the limit of sums truncated after the
first n summands and since Pr[B1] does not depend on this truncation we can write

Pr

[∞⋂
i=1

Bi

]
= lim
n→∞

(
Pr[B1]−

n∑
i=1

Pr[Bi\Bi+1]

)
.

The expression inside the limit is Pr[Bn+1], establishing the claim.

A.3 FKG inequality

Let A = {A1, A2, ..., Ar} be a collection of independent binary random variables. An event E
is said to be determined by A if there exists a fixed list SE ⊆ 2A such that E = {{A ∈ A |
A = 1} ∈ SE}, or, informally speaking, if knowing the values of A leads to knowing whether E
occurs. Moreover, if SE is upwards heritary, i.e. if

∀A ⊇ U ⊇ V : V ∈ SE ⇒ U ∈ SE ,

then E is called monotonically increasing in A.

Theorem 2.13. LetA = {A1, A2, ..., Ar} be a collection of independent binary random variables
and E1 and E2 events which are determined by A and monotonically increasing in A. Then

Pr[E1 ∧ E2] ≥ Pr[E1] · Pr[E2].

Proof. We proceed by induction on r.
For the base case, let r = 1. Then, there are only two non-empty monotonically increasing

events determined by A1: either an event that occurs for both values of A1 or an event that
occurs only if A1 = 1. If E1 = E2, the statement is trivial. Let now E1 be the first of these
cases and E2 be the other. If p is the probability that A1 = 1, then the probability that both
events occur is p, the probability that E1 occurs is 1 and the probability that E2 occurs is p,
establishing the claim.

For the induction step, let us assume that the statement holds for smaller values of r and let
p be the probability that A1 = 1. We can rewrite the right-hand side of our claim using the law
of total probability as:

Pr[E1] · Pr[E2] = (pPr[E1 | A1 = 1] + (1− p) Pr[E1 | A1 = 0])

· (pPr[E2 | A1 = 1] + (1− p) Pr[E2 | A1 = 0])

If we denote eij = Pr[Ei|A1 = j], we get

Pr[E1] · Pr[E2] = p2e11e21 + p(1− p)(e11e20 + e10e21) + (1− p)2e10e20.

The mutual independence of A together with the monotonicity of both E1 and E2 in A1 implies
that both events can only be more likely in the conditional space determined by {A1 = 1} than
in the case {A1 = 0}, thus we get e11 ≥ e10 and e21 ≥ e20. We can use this to estimate the mixed
term in our expansion: consider e11 ≥ e10 to be weights and the mixed term to be a weighted
sum of e21 ≥ e20. Currently, the larger weight accompanies the smaller summand. Thus, if we
exchange the weights so that the larger summand gets the larger weight, the weighted sum can
only increase. This yields

Pr[E1] · Pr[E2] ≤ p2e11e21 + p(1− p)(e10e20 + e11e21) + (1− p)2e10e20

= pe11e21 + (1− p)e10e20.

81

It is now time to invoke the induction hypothesis. We have assumed that the statement holds
for smaller r. The events E1 and E2 are, in the conditional space of {A1 = 1}, determined by
A2, A3, ...Ar and monotonically increasing in these variables. Therefore, in the conditional space
of {A1 = 1}, the FKG inequality holds for E1 and E2 by the induction hypothesis, yielding that

e11e21 ≤ Pr[E1 ∧ E2 | A1 = 1].

Analogously:
e10e20 ≤ Pr[E1 ∧ E2 | A1 = 0].

Consequently, we get

Pr[E1] · Pr[E2] ≤ pPr[E1 ∧ E2 | A1 = 1] + (1− p) Pr[E1 ∧ E2 | A1 = 0] = Pr[E1 ∧ E2]

as desired, by applying once more the law of total probability.

A.4 Riemann sums approximations

Lemma A.3. Let φ : [0, 1]→ [0, 1] be a continuous and monotonically non-decreasing function.
Then, for any N ≥ 1,

1

N

N−1∑
i=0

φ

(
i

N

)
≤
∫ 1

0

φ(x) dx ≤ 1

N

N−1∑
i=0

φ

(
i

N

)
+

1

N
.

Proof. Since φ is monotonically increasing, we have for all 0 ≤ x0 < x < x1 ≤ 1 that φ(x0) ≤
φ(x) ≤ φ(x1). In particular, if x0 = i

N and x1 = i+1
N for some i ∈ {0, ..., N − 1}, then

1

N
φ(x0) ≤

∫ x1

x0

φ(x) dx ≤ 1

N
φ(x1) =

1

N
φ(x0) +

1

N
[φ(x1)− φ(x0)].

By summing over all i, we obtain

1

N

N−1∑
i=0

φ

(
i

N

)
≤
∫ 1

0

φ(x) dx ≤ 1

N

N−1∑
i=0

φ

(
i

N

)
+

1

N

N−1∑
i=0

[
φ

(
i+ 1

N

)
− φ

(
i

N

)]
.

The last term is a telescopic sum yielding φ(1)− φ(0) ≤ 1, which completes the proof.

82

Appendix B

Complementary proofs

B.1 General inequalities

B.1.1 An inequality about logarithms

Lemma B.1. For x ≥ 0, we have

logd(1 + x) ≥ logd(e)
x

1 + x
.

Proof. As logd(x) is an antiderivative of logd(e)1/x and log(1) = 0, we have

logd(1 + x) =

∫ 1+x

1

logd(e)
1

t
dt ≥

∫ 1+x

1

logd(e)
1

1 + x
dt = logd(e)

x

1 + x
.

B.1.2 An inequality about power functions

Proposition B.2. If p 6= 0 and n ≥ 2, we have

(1 + p)n > 1 + np

Proof. We proceed by induction on n. For n = 2, we have

(1 + p)2 = 1 + 2p+ p2 > 1 + p.

Suppose the statement holds for n− 1. Then

(1 + p)n = (1 + p)(1 + p)n−1

> (1 + p)(1 + (n− 1)p)

= 1 + np+ (n− 1)p2 > 1 + np,

as desired.

83

B.1.3 A power identity

Proposition B.3.

∀n ∈ N,∀a, b ∈ R, an − bn = (a− b)
n−1∑
i=0

aibn−1−i.

Proof. We proceed by induction on n. For n = 1, we have a−b = (a−b)∑0
i=0 a

ibn−1−i = a−b,
so the statement holds.

Suppose that the statement holds for n− 1. Then

(a− b)
n−1∑
i=0

aibn−i−1 = b(a− b)
n−2∑
i=0

aibn−i−2 + (a− b)an−1

= b(an−1 − bn−1) + an − an−1b
= an − bn

B.2 Correlation inequalities

B.2.1 Proof of Lemma 2.24

Lemma 2.24. Let A,B ∈ R be random variables and a, b, ā, b̄ ∈ R fixed numbers such that
A ≥ a and B ≤ b always, and E[A] = ā and E[B] = b̄. Then

E[A ·B] ≤ ab̄+ bā− ab.

Proof. We can write
E[A ·B] = E[(A− a) ·B] + aE[B]

and then use B ≤ b and A ≥ a to obtain

E[A ·B] ≤ bE[A− a] + aE[B] = bā− ba+ ab̄,

as claimed.

B.3 Proof of Lemma 4.12

The following lemma is proven in [6].

Lemma 4.12. Let X,T, T ′, U, V be finite vectors of real random variables, all independent,
taking only finitely many values. Suppose T and T ′ are over Rn and have the same distribution.
Let f, g : Rn → R be monotonically increasing functions, and let h : R → R be a concave
function. Then

E[h(f(X,T, U) + g(X,T, V))] ≤ E[h(f(X,T, U) + g(X,T ′, V))].

Proof. Observe first that if the lemma holds for any particular choice of X, U and V and
not only when taking expectation over these three vectors, the lemma follows. We prove this by

84

substituing arbitrary concrete real vectors for X, U and V , and consequently we obtain functions
f ′ and g′ that depend only on Y and are still monotone. Hence, it suffices to prove that

E[h(f(Y) + g(Y))] ≤ E[h(f(Y) + g(Y ′))] (B.1)

where Y and Y ′ are over Rn and f, g : Rn → R are monotonically increasing functions.
Second, we claim that it suffices to examine the case n = 1. If we can prove the lemma

for n = 1, we can repeatedly replace every component Yi of Y by Y ′i , eventually obtaining the
above inequality. Hence, let us assume n = 1, and Y, Y ′ independent identically distributed
real random variables. By symmetry, it holds that E[h(f(Y) + g(Y))] = E[h(f(Y ′) + g(Y ′))],
and E[h(f(Y) + g(Y ′))] = E[h(f(Y ′) + g(Y))]. Multiplying equation (B.1) by 2 and using these
identities, we obtain:

E[h(f(Y) + g(Y))] ≤ E[h(f(Y) + g(Y ′))]

⇔ 2E[h(f(Y) + g(Y))] ≤ 2E[h(f(Y) + g(Y ′))]

⇔ E[h(f(Y) + g(Y))] + E[h(f(Y ′) + g(Y ′))] ≤ E[h(f(Y) + g(Y ′))] + E[h(f(Y ′) + g(Y))]

⇔ E[h(f(Y) + g(Y)) + h(f(Y ′) + g(Y ′))] ≤ E[h(f(Y) + g(Y ′)) + h(f(Y ′) + g(Y))]

We now prove this last inequality, and for this we show that it holds not only in expectation,
but for every particular choice of Y, Y ′ ∈ R. Fix such a choice. Without loss of generality, we
can assume that Y ≤ Y ′ and therefore f(Y) ≤ f(Y ′) and g(Y) ≤ g(Y ′), using motononicity.
Second, we can assume without loss of generality that f(Y) + g(Y ′) ≤ f(Y ′) + g(Y). Writing
a := f(Y) + g(Y), b := f(Y) + g(Y ′), c := f(Y ′) + g(Y) and d := f(Y ′) + g(Y ′), we see that
a ≤ b ≤ c ≤ d. The claimed inequality states that h(a) + h(d) ≤ h(b) + h(c). Divided by
two, the statement becomes equivalent to saying that the midpoint of the longer line segment
in Figure B.1 is below the one of the shorter. This follows immediately from h being a concave
function.

a b c d

h

Figure B.1: Illustration of the final equality in the proof of Lemma 4.12.

B.4 Proof of Lemma 4.8

Lemma 4.8. Let A be a finite set and let f : 2A → R be a function that satisfies f(B′) ≤ f(B),
∀B′ ⊆ B ⊆ A.

Let q′ : A→ [0, 1] and q : A→ [0, 1] be two functions that satisfy q′(a) ≤ q(a),∀a ∈ A.
At first, let Cq′ and Cq be the empty set. Now consider the two following random experiments:

85

1. ∀a ∈ A, choose a ∈ Cq′ with probability q′(a).

2. ∀a ∈ A, choose a ∈ Cq with probability q(a).

Note that the events are independent.
Then we have E[f(Cq′)] ≤ E[f(Cq)].

Proof. We define a set Cq′′ such that Cq′′ = Cq′ ∪B where, for all a ∈ A, we choose a ∈ B with

probability p(a) = q(a)−q′(a)
1−q′(a) , independently of the other events.

Then the probability that a given x is in Cq′′(a) is

Pr[a ∈ Cq′′] = Pr[a ∈ Cq′ ∨ a ∈ B]

= Pr[a ∈ Cq′] + Pr[a ∈ B]− Pr[a ∈ Cq′ ∧ a ∈ B]

= q′(a) + p(a)− p(a)q′(a)

= p(a)(1− q′(a)) + q′(a)

= q(a(a))

Hence, Cq′′ and Cq have the same probability distribution, so E[f(Cq′′)] = E[f(Cq)]. But then,
Cq′ ⊆ Cq′′ , so E[f(Cq′)] ≤ E[f(Cq′′)] = E[f(Cq)], which concludes the proof.

86

Bibliography

[1] Robert G Bartle. The elements of integration and Lebesgue measure, volume 92. Wiley-
Interscience, 2011.

[2] Timon Hertli. 3-SAT faster and simpler – unique-SAT bounds for PPSZ hold in general. In
Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, pages
277–284. IEEE, 2011.

[3] Sebastian J. Millius. Towards a generalization of the PPSZ algorithm for large domains and
multiple solutions. Master’s thesis, Eidgenössische Technische Hochschule ETH Zürich, 2012.

[4] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. Journal of the ACM (JACM), 52(3):337–364, 2005.

[5] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. In Founda-
tions of Computer Science, 1997. Proceedings., 38th Annual Symposium on, pages 566–574.
IEEE, 1997.

[6] Dominik Alban Scheder. Algorithms and Extremal Properties of SAT and CSP. PhD thesis,
Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19614, 2011.

[7] May Szedlák. The PPSZ algorithm for large domains. Bachelor thesis, Eidgenössische Tech-
nische Hochschule ETH Zürich, 2011.

[8] Emo Welzl. Boolean satisfiability – combinatorics and algorithms, 2013.

87

	Basic concepts and notation
	PPSZ for 3-SAT
	The PPSZ algorithm for 3-SAT
	Unique satisfying assignment
	Forced and guessed variables
	What does it mean for a variable to be forced?
	Building critical clause trees
	Placements, critical clause trees and forced variables
	Random deletion in infinite binary trees
	From infinite to finite trees
	From independent to dependent labels
	Integrating over the place of the root
	Summary

	Multiple satisfying assignments
	Problem assessment
	Proof idea
	Definition of a cost function
	Proving lem:cost

	Summary

	A weak version of PPSZ for (d,k)-ClSP
	The algorithm
	Unique satisfying assignment
	Forced and guessed variables
	Building critical clause trees
	Critical clause trees and forced variables
	Random deletion in infinite and finite trees of degree (d-1)(k-1)
	From independent to dependent labels
	Integrating over the rank of the root

	Multiple satisfying assignments
	Definition of a cost function
	Proving lem:costppszweak
	Using the induction hypothesis

	Summary

	A strong version of PPSZ for (d,k)-ClSP
	The algorithm
	Unique satisfying assignment
	The sets A(x, , D)
	Building critical clause trees
	Critical trees and A(x, , D)
	Random deletion in one infinite tree
	From one tree to (d-1) trees
	From infinite to finite trees
	From independent to dependent labels
	Integrating over the rank of the root
	Summary

	Multiple satisfying assignments
	Definition of a cost function
	Towards the proof of conj:2

	Glossary of classical notions
	Jensen's inequality
	Monotone convergence theorem
	FKG inequality
	Riemann sums approximations

	Complementary proofs
	General inequalities
	An inequality about logarithms
	An inequality about power functions
	A power identity

	Correlation inequalities
	Proof of lem:corrineq

	Proof of lem:genexpfun
	Proof of lem:genexp

