
Towards the Derandomization of the
PPSZ algorithm for the Multiple

Satisfying Assignments Case

Master Thesis

Isabelle Hurbain

April 1st, 2014

Advisors: Prof. Dr. Emo Welzl, Timon Hertli

Department of Computer Science, ETH Zürich

Abstract

The PPSZ algorithm [11] is currently the fastest algorithm for k-SAT [5].
It has been derandomized in 2005 by Rolf [13] for the case where the
formula is guaranteed to have a single satisfying assignment. In this
thesis, we explore a derandomization plan for the general case, and the
associated questions. We start by reviewing previous work on deran-
domization of the PPZ [12] and PPSZ algorithms [13]. We then prove a
general result on the PPSZ algorithm that may make subsequent anal-
yses easier.

We next present our work on the derandomization itself: our final goal
would be to reduce as much as possible the number of random bits
used in the PPSZ algorithm. We consider the random bits induced
by choosing a random permutation: we want to find a small set of
permutations sach that PPSZ still returns a satisfying assignment with
a good enough probability. This would allow us to enumerate this set
in a derandomization. We have not been able to find such a small set
of permutations yet, but we have gained some insight on the reason
why this problem resisted our attempts so far, namely that it is difficult
to control the correlations between variables when not considering the
whole set of permutations. Finally, we consider the question of what
happens if we replace the random bits that are used for non-frozen
variables by some construction, for instance if we consider them set
by an external oracle. We have proven that the success probability of
PPZ was not adversely affected by setting the non-frozen variables to
0. Whether it is also the case for PPSZ is still not known; whether
it is possible to construct an oracle in reasonable time is not known
either. We conclude this thesis by enumerating a number of issues and
questions that are still open.

Acknowledgements

First and foremost, many thanks to Timon Hertli for supervising this
work; his insights, advice and enthusiasm made the development of
this thesis a truly rewarding and enjoyable experience. I would also like
to thank Robin Moser for the fruitful discussions about some ideas in
this thesis. The SAT course run in 2012 by Emo Welzl and Robin Moser
was truly inspiring: many thanks to them as well for this. Finally,
thank you Tobias and Matthias for proofreading the draft version of
this thesis.

i

Contents

Contents iii

I Preliminaries 1

1 Introduction and notation 3
1.1 Motivation . 3
1.2 Notation . 4

1.2.1 Notions specific to the satisfiability of boolean formulas 4
1.2.2 General notions . 6

2 The PPZ and PPSZ algorithms 7
2.1 The PPZ algorithm . 8
2.2 The PPSZ algorithm . 9

2.2.1 Variable classification for PPSZ 11
2.2.2 Critical clause trees . 11
2.2.3 Cost function . 13

3 First attempts at derandomizing PPZ and PPSZ 15
3.1 Building a permutation probability space 15
3.2 Limited derandomization of PPZ 16

3.2.1 Derandomization of PPZ in the j-isolated or unique case 19
3.3 Derandomization of PPSZ in the unique case 19

3.3.1 Properties of the random permutation 20
3.3.2 Reachable nodes in critical clause trees 20
3.3.3 A derandomized algorithm 23

II Elements for the derandomization of PPSZ 25

4 Derandomization plan 27

iii

Contents

4.1 Main ideas for derandomization 27
4.2 Questions explored in this thesis 28

5 Probability of returning a given assignment 31

6 PPSZ with a smaller permutation set 37
6.1 The set Ω(n, w, L) . 37

6.1.1 Probability of a variable to be guessed 37
6.1.2 Likelihood evolution . 38

6.2 A block-wise construction for permutations 40
6.2.1 Construction of the permutation set 40
6.2.2 Invalidating critical clause trees 42
6.2.3 Probability of returning a given assignment 44

7 PPSZ with oracle 49
7.1 PPZ with oracle . 49

7.1.1 PPZ with a nice oracle 49
7.1.2 PPZ with a poor oracle 52

7.2 PPSZ with oracle . 52
7.2.1 Problems with the analysis of standard PPSZ 52
7.2.2 Discarding the likelihood 54
7.2.3 Conclusion and outlook 57

8 Conclusion 59
8.1 Results . 59
8.2 Future directions . 60

8.2.1 Building an oracle for non-frozen variables 60
8.2.2 Other questions . 62

A Auxilliary statements and deferred proofs 63
A.1 Jensen inequality . 63
A.2 Binary coefficients and entropy function 64
A.3 FKG inequality . 64
A.4 An inequality about logarithms 66
A.5 w-wise independent probability spaces 66
A.6 A correlation inequality . 67

Bibliography 69

iv

Part I

Preliminaries

1

Chapter 1

Introduction and notation

1.1 Motivation

The boolean satisfiability problem, in short SAT, is the decision problem
of determining if there exists an assignment to the variables of a boolean
formula such that the whole formula evaluates to ‘true’. It is the first
known NP-complete problem, as proven independently by Cook [3] and
Levin [8]. Even when restricting the boolean formulas to k−CNF formulas
– conjunctive normal form, i.e. formulas that are composed of the conjunc-
tion (“AND”) of disjunction (“OR”) of k literals – the problem, then called
k-SAT, stays NP-complete. Provable bounds for the runtime of algorithms
solving k-SAT have been an active research domain for decades. The record
for these bounds is currently held by the PPSZ algorithm [11], named after
its authors Paturi, Pudlák, Saks and Zane; the bound itself has been proven
to hold in full generality by Hertli [5]; the corresponding bounds for the
runtime are O(1.308n) for 3-SAT and O(1.469n) for 4-SAT. PPSZ is a ran-
domized algorithm: it uses random bits to make some choices during its
execution. The performance of such an algorithm is actually expressed in
terms of success probability. It is proven that PPSZ, given a satisfiable 3-SAT
formula as an input, will return a satisfying assignment with probability at
least 1.308−n (where n is the number of variables of the formula), where the
probability is over the choice of random bits that are made by the algorithm.
This probability is quite low by itself, but if we now proceed to λ · 1.308n

independent repetitions of PPSZ, the probability that PPSZ does not find a
satisfying assignment is e−λ, and can thus be made arbitrarily small. When
talking about the runtime of PPSZ, we actually give an upper bound on
the number of repetitions that is guaranteed to yield an exponentially small
probability that a satisfying assignment will not be found1.

1A single run of PPSZ takes polynomial time in n; this factor is absorbed by the precision
with which we give the success probability and running time of the algorithm.

3

1. Introduction and notation

A year after the introduction of the PPSZ algorithm, but some time before
Hertli’s analysis proving its general bound, Schöning proposed another ran-
domized algorithm [15] that held, at that time, the runtime record for 3-SAT
formulas with multiple satisfying assignments with a runtime of O(1.334n).
PPSZ and Schöning’s algorithms use a different approach. The idea of
Schöning is to start from a random assignment from the hypercube, and
to search around that random assignment for a satisfying assignment, by
guiding the search according to the clauses in the formula. On the other
hand, the idea of PPSZ is to repeatedly cut the hypercube in two, keeping
the “correct” half if it can be identified or a random one if it cannot, until
it contains only a satisfying assignment or can be identified to not contain
any. Schöning’s algorithm has been derandomized by Moser and Scheder
[10] and holds the current record of the fastest deterministic algorithm for
k-SAT, k ≥ 4; for the case of 3-SAT, the bound of that derandomization has
been improved to O(1.3303n · poly(n)) by Makino, Tamaki and Yamamoto
[9] by derandomizing a modified version of Schöning’s algorithm.

One of the fundamental open questions when it comes to randomized algo-
rithms is to know whether randomness is at all necessary. In other words,
given a randomized algorithm, is there a deterministic algorithm whose
runtime is arbitrarily close to the expected runtime of the randomized al-
gorithm? Without considering this open question in its full generality, the
derandomization of individual algorithms still represents an adequate chal-
lenge and often allows to gain insight on the original algorithm. A full
derandomization of PPSZ would also be, at the time of this writing, the
fastest deterministic algorithm for k-SAT.

1.2 Notation

We use the notational framework and definitions established in [17].

1.2.1 Notions specific to the satisfiability of boolean formulas

A boolean formula in propositional is an expression built from boolean vari-
ables, the operators AND (∧), OR(∨) and NOT (denoted by an upper bar .̄
on the negated expressions). For a given formula F, we denote by V the set
of all boolean variables that appear in F.

An assignment α on V is a mapping α : V → {0, 1}. An assignment α on V
satisfies a formula F if, when substituting the variables with their value in
the assignment, F evaluates to 1. Such an assignment is called a satisfying
assignment. The set of all satisfying assignments of F is denoted satV(F) or
sat(F) if V is clear from the context.

4

1.2. Notation

The problem of satisfiability of boolean formulas or SAT is the problem of de-
ciding whether, given a boolean formula in propositional logic, there exists
an assignment that satisfies it. In the realm of this thesis, we consider exclu-
sively formulas in conjunctive normal form (we use the term CNF formula);
to define this notion, we first need the notion of literal and the notion of CNF
clause.

A literal is a variable or the negation of a variable; for a variable x we define
the positive literal x and the negative literal x̄, where x̄ = 0 iff x = 1.

A CNF clause C over V is a disjunction of literals whose variables come from
V: for instance, (x1 ∨ x̄2 ∨ x3) is a CNF clause over V if x1, x2, x3 ∈ V.The set
of variables that occur in C is denoted by vbl(C).

A CNF formula over V is a conjunction of CNF clauses over V: for instance,
(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 x̄4) is a CNF formula over V if x1, x2, x3, x4 ∈ V.
If all the clauses of a CNF formula contain exactly (respectively at most) k
literals, it is called a k-CNF formula (respectively a (≤ k)-CNF formula). The
decision problem for (≤ k)-CNF formulas is called k-SAT.

Every boolean formula in propositional logic F admits an equivalent 3-SAT
formula F′ such that F is satisfiable if and only if F′ is satisfiable; moreover
F′ can be built in polynomial time of the size of F.

For a partial or a total assignment α0, we define by domain of α0 (denoted by
dom(α0)) as the set of variables x such that α0 contains a value assignment
l = (x 7→ b), where b = 0 or b = 1.

For a formula F and a partial assignment α0 on vbl(F), we denote by F[α0]

the restriction of F to α0, that is the formula that is obtained by substituting
the variables in the domain of α0 with their assigned values (for a variable
x that is assigned the value 0, we replace in the formula all instances of x
by 0 and all instances of x̄ by 1). For a CNF clause, this means that a clause
containing a satisfied literal of the variable x is removed from the formula
(since it is satisfied), and that the literals of the variable x that are unsatis-
fied are removed from their corresponding clause: they cannot contribute to
the satisfaction of these clauses. A clause that does not contain any literal
(empty clause) is always unsatisfied; we denote an empty clause by �.

We can consider some elements of these definitions in the language of sets,
and we will use these notation in the following of this thesis.

The set of all literals is V ∪ V̄, where V contains all the positive literals and V̄
all the negative literals of V. A clause C over V is a subset of pairwise strictly
distinct literals of V ∪ V̄ (where strictly distinct means that if the literal x is
in the clause, then x̄ is not, and reciprocally). C is a k-clause if |C| = k and
a (≤ k)-clause if |C| ≤ k. A CNF formula F is a set of clauses. This allows
us to use the set terminology when talking about formulas and clauses; in

5

1. Introduction and notation

particular, we will be able to write that x ∈ C and that C ∈ F for x a literal,
C a clause and F a formula.

We can interpret a partial assignment α0 on V(F) as a set of value assign-
ments l = (x 7→ b), where b = 0 or b = 1. We denote α0(x) = b. We use the
shorthand α0[l] = α0 ∪ {l} = α0 ∪ {x 7→ b}. If the assignment (x 7→ b) is in
the partial assignment α0, we write that (x, b) ∈ α0.

1.2.2 General notions

On top of the notions that are specific to the satisfiability problem, we also
need a few general notions that are out of the scope of satisfiability per se.

Given a set V (of variables), we define a permutation π of V as a total ordering
of the elements of V. We define ΠV as the set of all permutations of V.
Alternatively, we will define π as a placement of the variables in V as π :
V → [0, 1]. If the values π(x) are all distinct, we can sort the values π(x)
to obtain a permutation of V. When picking the values π(x) independently
and uniformly at random from [0, 1] for each x ∈ V, then with probability 1,
π is injective and we obtain a uniformly distributed permutation of V.

A k-ary tree is a rooted tree such that every node has at most k children. A
full k-ary tree is a tree such that every internal node has exactly k children
and such that every path from the root to a leaf has the same length.

We will use the abbreviation “u.a.r.” for “uniformly at random”. We will
also use the shorthand x ∈Φ X to indicate that x is chosen in the set X
according to the distribution Φ (and x ∈u.a.r. X to indicate that x is chosen
uniformly at random in X).

6

Chapter 2

The PPZ and PPSZ algorithms

The PPZ algorithm, named after its authors Paturi, Pudlák and Zane ([12])
can be described as follows:

Pick a random permutation of the variables of the formula, and
process the variables in that order. Start with an empty assign-
ment. For every variable x, if the formula contains the clause
{x}, add {x 7→ 1} to the assignment; if the formula contains the
clause {x̄}, add {x 7→ 0} to the assignment. If the formula con-
tains neither of these clauses, pick a random value b ∈ {0, 1} and
add {x 7→ b} to the assignment. Modify the formula to reflect
the fact that a variable has been set. If the resulting assignment
is satisfying, then we are done. Otherwise, try again.

The PPSZ algorithm, named after its authors Paturi, Pudlák, Saks and Zane
([11]), is a refinement of the PPZ algorithm, and can be described as follows:

Pick a random permutation of the variables of the formula, and
process the variables in that order. Start with an empty assign-
ment. For every variable x, check if its value b can be determined
by examining a small number of clauses. If yes, add {x 7→ b} to
the assignment. If not, pick a random value for b in {0, 1}, add
{x 7→ b} to the assignment. Modify the formula to reflect the
fact that a variable has been set. If the resulting assignment is
satisfying, then we are done. Otherwise, try again.

In this chapter, we will give a more formal description of these two algo-
rithms, and we will give the bounds that has been established for the ex-
pected runtime of these algorithms. We will also give a few tools and give
a few results that are used in the analysis in these algorithms, and that we
will also use in this thesis.

7

2. The PPZ and PPSZ algorithms

2.1 The PPZ algorithm

We define the PPZ algorithm formally as follows:

nd for function ppz(F, V):
Input: F CNF formula over V
Output: Satisfying assignment for F or ∅
π ←u.a.r. ΠV ;
α← ∅;
for i← 1 to |V|:

x ← π(i);
if {x} ∈ F:

b← 1;
else if {x̄} ∈ F:

b← 0;
else:

b←u.a.r. {0, 1};
α← α ∪ {x 7→ b};
F ← F[x 7→b];
if � ∈ F:

return ∅;
e
return α;

This algorithm has been introduced by Paturi, Pudlák and Zane [12], and
they established its success probability:

Theorem 2.1 ([12]) The probability that ppz() finds a satisfying assignment in a
satisfiable (≤ k)-CNF formula over n variables is at least 2−n+n/k.

The proof of this theorem relies heavily on the notion of “j-isolation”, which
itself relies on the notion of critical variables.

Definition 2.2 (Critical variables and critical clauses [17]) Given an assign-
ment α ∈ satV(F), we call a variable x ∈ V critical for α if flipping the value
of x in α stops it being satisfying. This requires at least one clause in F that has x
or x̄ as a unique literal that is set to 1 by α. Such a clause is called a critical clause
for x.

Definition 2.3 (Isolation of an assignment [17]) By j(α), we denote the num-
ber of critical variables for α, and we say that α is j-isolated if j(α) ≥ j. n-isolated
assignments (thus j(α) = n) are called isolated.

The PPZ algorithm, when using the permutation π, can be seen as a de-
coding function for the encoding function Φπ, defined as follows. Let
α ∈ {0, 1}n be a satisfying solution of F. Build the encoding bit by bit
following the order defined by the permutation π = (x1, ..., xn). The ith bit

8

2.2. The PPSZ algorithm

is either omitted if F[x1 7→α(x1),x2 7→α(x2),...,xi−1 7→α(xi−1)] contains the clause {xi} or
{x̄i}, or α(xi) otherwise. The length of the encoding for a given assignment
depends on the permutation π.

Together with the notion of j-isolation, the following lemma is crucial to
prove Theorem 2.1:

Lemma 2.4 (Satisfiability Coding Lemma [12]) If x is a j-isolated satisfying
assignment of a k-CNF, then its average (over all permutations π) description length
under the encoding Φπ is at most n− j/k.

For a full proof of this lemma and of Theorem 2.1, refer to the original paper
[12].

2.2 The PPSZ algorithm

The PPSZ algorithm [11] is an improvement on the PPZ algorithm: instead
of checking whether the clause {x} or {x̄} exists in the formula, it checks
whether such a clause can be derived from a subset of clauses in the formula.
A slightly modified version of the original PPSZ algorithm, proposed by
Hertli [5], uses the notion of D-implication:

Definition 2.5 Let F be a satisfiable CNF formula over a set of variables V. We
say that a literal l is D-implied by F (in writing F �D l) if there exists a subset G
of F with |G| ≤ D such that all satisfying assignments of G = (G, V) set l to 1.

Observe that, in this definition, we are talking about literals and not vari-
ables: “setting l to 1” can mean “setting x to 1” or “setting x to 0” depending
on whether the considered literal is x or x̄.

9

2. The PPZ and PPSZ algorithms

With this definition, we can state the PPSZ algorithm formally, where α0 is
∅ when running the algorithm itself, but will be used later in the analysis.

function ppsz(F, V, α0, D):
Input: F CNF formula over V, D ∈N0, α0 partial assignment

whose values we want to fix in advance
Output: Satisfying assignment for F or ∅
π ←u.a.r. ΠV\dom(α0);
α← α0;
for i← 1 to |π|:

x ← π(i);
if F[α] �D {x 7→ 1}:

b← 1;
else if F[α] �D {x 7→ 0}:

b← 0;
else:

b←u.a.r. {0, 1};
α← α ∪ {x 7→ b};
F ← F[x 7→b];

end for
if α satisfies F:

return α;
return failure;

Bounds on the runtime of the PPSZ algorithm were first given by the origi-
nal authors, Paturi, Pudlák, Saks and Zane [11], but the proven bounds were
better for the case where the formula is guaranteed to have a unique satisfy-
ing assignment than for the case where the formula could have an arbitrary
number of satisfying assignments. Hertli [5] closed the gap, which allows
us to state the following theorem:

Theorem 2.6 ([11, 5]) For any D, the probability that ppsz(F, V, ∅, D) finds
a satisfying assignment in a satisfiable (≤ k)-CNF formula F over a set V of n

variables is at least 2−S(D)
k n, where

lim
D→∞

S(D)
k = Sk =

∫ 1

0

t1/(k−1)−t

1− t
dt.

The proof of this theorem is considerably more involved than the proof of
Theorem 2.1. In this section, we will give a few definitions and results that
are involved in the proof; for a full proof, refer to the original papers [11, 5].
An extended, more detailed write-up of these papers can be found in [17]
and in [6].

10

2.2. The PPSZ algorithm

2.2.1 Variable classification for PPSZ

We define here some of the terminology that we will use when talking about
variables in the context of PPZ and PPSZ. Let F be a CNF formula over n
variables, α ∈ {0, 1}n a satisfying assignment, and α0 a partial assignment
that is compatible with α. To simplify notation, we will write U (α0) =
V\dom(α0) and n(α0) = |U (α0)|. Let π = (x1, ..., xn(α0)) be a permutation of
U (α0), and D > 0.

Definition 2.7 A variable is called forced (with respect to F, α0, α, π, and D) if
F[α0∪{x1 7→α(x1),...,xi−1 7→α(xi−1)}] D-implies xi or x̄i. Otherwise, the variable is called
guessed. We denote the set of forced (resp. guessed) variables within U (α0) by
Forced(F, α0, α, π, D) (resp. Guessed(F, α0, α, π, D)).

Definition 2.8 A variable x is called frozen (with respect to F and α0) if all satisfy-
ing assignments of F[α0] set x to the same value. It is called non-frozen otherwise.

Observe that, for a given F, α0, π and D, a variable x can be:

• non-frozen (we write that x ∈ Vnf(α0)): there exists two satisfying
assignments of F[α0] α and α′ such that α(x) = 0 and α′(x) = 1,

• frozen, but not forced (we write that x ∈ Vfr(α0)): all the satisfying
assignments of F[α0] send x to the same value b, but for every subset
of G of F such that |G| ≤ D, there is a satisfying assignment of G that
sets x to b̄,

• forced (we write that x ∈ Vfo(α0)): F �D x or F �D x̄ (a forced variable
is necessarily frozen).

The frozen, non-forced variables are the only “source” of possible errors for
the PPSZ algorithm: in the other cases, assigning a value to the a variable
cannot make a partial satisfying assignment unsatisfying. In a formula that
admits a single satisfying assignment, all variables are frozen.

2.2.2 Critical clause trees

The analysis of the PPSZ algorithm relies on critical clause trees, whose defi-
nition we give here.

Definition 2.9 ([17]) Let F be a satisfiable ≤ k-SAT formula, let α∗ be a satisfying
assignment, and let x be a frozen variable of F. We define a critical clause tree of
x and we denote by Tx a tree which is built as follows. Tx is a rooted tree such that
every node has at most k− 1 children, and where every node u ∈ V(Tx) is labelled
both with a variable y ∈ V, which we denote by var-label(u), and a clause C ∈ F,
denoted by clause-label(u). For a fixed x:

1. Start with Tx consisting of a single root. This root has variable label x, and
no clause label yet.

11

2. The PPZ and PPSZ algorithms

2. As long as there is a leaf u ∈ V(T) that does not yet have a clause label, do
the following:

a) Define W := {var-label(v) | v ∈ V(Tx) is an ancestor of u in Tx},
where ancestor includes u itself and the root.

b) Define the total assignment µ as:

µ : vbl(F)→ {0, 1}, z 7→
{

1− α∗(z) if z ∈W,
α∗(z) otherwise.

c) Let C ∈ F be a clause not satisfied by µ. Since x is a frozen vari-
able and its value is assigned to 1− α∗(x), such a clause exists. Set
clause-label(u) = C.

d) For each unsatisfied literal w ∈ C, create a new leaf, label it with the
variable underlying w, and attach it to u as a child. The new leaf does
not yet have a clause label.

Figure 2.1 shows an example of a critical clause tree being build (before
the clause-labels for the current leafs are assigned) for a 3-CNF formula
containing the clauses {x, ȳ, z̄}, {x, v̄, w̄} and {x, z, ā}, and whose unique
satisfying assignment is the all-1 assignment.

x

{x, ȳ, z̄}

y

{x, v̄, w̄}

v

z

{x, z, ā}

w a

Figure 2.1: A critical clause tree being built

We then call a node u ∈ Tx reachable at time γ w.r.t. π if there exists a path
v0, v1, ..., vm such that v0 is the root of the tree, vm = u and π(vi) ≥ γ for
all 1 ≤ i ≤ m. Let us denote Reachable(Tx, γ, π) the set of all nodes in
Tx reachable at time γ w.r.t. π. Reachable nodes and forced variables are
related as follows:

Lemma 2.10 ([17]) If we have |Reachable(Tx, π(x), π)| ≤ D, then it holds as well
that x is forced.

The proof of this lemma can be found in [17] and in [6].

12

2.2. The PPSZ algorithm

2.2.3 Cost function

The main idea of the proof of the success probability of PPSZ for the multiple
case, as established in [5] and described in [17] and in [6], relies on the
definition of a cost function and on the relation between that cost function
and the success probability.

Definition 2.11 (Cost function [17]) Let α0 be a partial and α be a total assign-
ment and let x ∈ V be any variable. We define the cost of x when completing α0
to α, in writing cost(α0, α, x) as follows:

• If x /∈ U (α0), then cost(α0, α, x) = 0.

• If α0 and α are incompatible, i.e. ∃x : {α0(x), α(x)} = {0, 1}, then
cost(α0, α, x) = 0.

• If α does not satisfy F, then cost(α0, α, x) = 0.

• Otherwise:

– If x ∈ Vfo(α0), then cost(α0, α, x) = 0.

– If x ∈ Vfr(α0), then cost(α0, α, x) = Pr[x ∈ Guessed(F, α0, α, π, D)].

– If x ∈ Vnf(α0), then cost(α0, α, x) = S(D)
k .

We also define the likelihood of an assignment:

Definition 2.12 (Likelihood of an assignment [5]) Let F[α0] be satisfiable and
let Sα0 be the set of value assignments l = {x 7→ b} such that x ∈ U (α0) and
F[α0[l]] is satisfiable. We define the random process AssignSL(F, α0) that produces
an assignment on vbl(F) as follows. Start with the assignment α0 and repeat the
following step until vbl(F[α0]) = ∅: Choose a value assignment l ∈ Sα0 uniformly
at random and add l to α0. At the end, output α0.

Let α be a total assignment on vbl(F). Then the likelihood of completing α0 to
α, in writing lkhd(α0, α) is defined as the probability that AssignSL(F,α0) returns
α. For completeness, if F[α0] is not satisfiable, we define lkhd(α0, α) = 0.

Finally, we define cost(α0, x), cost(α0, α) and cost(α0):

Definition 2.13 Let α0 be a partial assignment over V. The cost of x when
completing α0 to any satisfying assignment, in writing cost(α0, x) is defined as

cost(α0, x) = ∑
α∈{0,1}V

lkhd(α0, α) · cost(α0, α, x).

The cost of completing α0 to α, in writing cost(α0, x), is defined as

cost(α0, α) = ∑
x∈V

cost(α0, α, x).

13

2. The PPZ and PPSZ algorithms

The total cost of completing α0 to any satisfying assignment, in writing
cost(α0), is defined as

cost(α0) = ∑
x∈V

cost(α0, x) = ∑
α∈{0,1}V

lkhd(α0, α) · cost(α0, α).

Let us state a lemma about the evolution of the cost and the likelihood when
assigning a variable:

Lemma 2.14 ([17]) Let α0 and α be fixed and compatible. For any fixed variable
x ∈ U (α0), if we set x according to α, then

(i) the likelihood of α can only increase, i.e.

lkhd(α0 ∪ {x 7→ α(x)}, α) ≥ lkhd(α0, α)

with equality if x is frozen in F[α0].

(ii) the cost of a fixed variable y ∈ V w.r.t. α can only decrease, i.e.

cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y)

When choosing x ∈ U (α0) uniformly at random and setting it according to α, then

(iii) the likelihood of α increases on average as

E[lkhd(α0 ∪ {x 7→ α(x)}, α)] =

(
1 +
|Vnf(α0)|

n(α0)

)
lkhd(α0, α)

(iv) the cost of a fixed variable y ∈ Vfr(α0) decreases on expectation as

E[cost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ cost(α0, α, y)− s
n(α0)

,

where

s =


1 if y ∈ Vfr(α0)

S(D)
k if y ∈ Vnf(α0)

0 if y ∈ Vfo(α0)

The proof of this lemma is available in [17] and in [6].

14

Chapter 3

First attempts at derandomizing PPZ
and PPSZ

A brutal approach to derandomize the PPZ and PPSZ algorithms would
be to consider all permutations and all binary strings corresponding to all
possible runs of the algorithm. While this will work, the corresponding run-
time will be completely useless, even with regard to the naive approach to
test all 2n possibilities to satisfy the formula. However, reducing the search
space for the permutations and the possible binary strings while guarantee-
ing that a “good” combination will happen yields deterministic algorithms
with a non-trivial runtime.

Some attempts at derandomizing PPZ and PPSZ following this approach
have been made so far. In the original PPZ paper [12], Paturi, Pudlák and
Zane propose a derandomization of the algorithm that does not achieve ex-
actly the bounds of the randomized algorithm. Rolf [13] proposed a method
to derandomize PPSZ with the same runtime as the randomized version of
the algorithm when a formula is guaranteed to have at most one satisfying
assignment1. In this chapter, we will first explain how to reduce the search
space of the permutations. We will then use this tool to explain the previous
attempts at derandomizing PPZ and PPSZ.

3.1 Building a permutation probability space

As in the standard analysis of the PPSZ algorithm [11], we consider the
permutation as a placement of variables: we pick, for each variable, a real
number independently and uniformly at random in the interval [0, 1] and
we sort the variables according to these numbers. With probability 1, any
two numbers are distinct. In the next sections, we will see that the full

1At that time, it was not known whether the bound established for the unique satisfying
assignment case also hold in general for PPSZ.

15

3. First attempts at derandomizing PPZ and PPSZ

independence hypothesis can be replaced by w-wise independence. This
can be achieved with smaller pools than the continuous interval [0, 1], and
yields a much smaller set of permutations than n!. This section gives a
method to build such a small set of permutations efficiently.

We use the following theorem, which is discussed in [1]:

Theorem 3.1 ([1],[13]) For every n, w such that 1 ≤ w ≤ n, there exists a
probability space Ω(n, w) of size O(nw/2) and w-wise independent random vari-
ables y1, ..., yn over Ω(n, w), each of which takes value 0 or 1 with probability 1/2.
Ω(n, w) can be constructed in polynomial time.

The proof of this theorem is given in Appendix A.5 on page 66.

The following procedure is presented in [13]. Given Theorem 3.1, for given
n, w and L, we can construct a probability space as follows. For each ` in
[L], draw n w-wise independent random variables y1,`, ..., yn,` as stated in
Theorem 3.1 using Ω(n, w). Define, for all x in [n],

π(x) = ∑
`∈[L]

2−`yx,`,

i.e. yx is a binary encoding of π(x) with length L. Let A(L) be the set of all
possible real values that π(.) can take. For a fixed x, the random variables
yx,. are fully independent since they are drawn from independent probability
spaces. Hence, every value of A(L) has the same probability to be chosen
for π(x). For a fixed `, the random variables y.,` are w-wise independent,
because they are drawn from Ω(n, w). This holds for every ` independently,
so the values of π(.) are w-wise independent.

The values of π are taken w-wise independently and uniformly at random
over A(L): we call this probability space a w-wise independent probability space
for n reals with precision L, denoted by Ω(n, w, L), where L is the number of
bits defining a place for a given variable. The following lemma follows from
the construction:

Lemma 3.2 Ω(n, w, L) can be constructed with size O(nLw/2) and in polynomial
time in its size.

3.2 Limited derandomization of PPZ

The original PPZ paper [12] gives a limited (in the sense that the runtime
does not match the randomized algorithm runtime) derandomization of the
PPZ algorithm. The construction of a small space of permutations is not
given explicitly in the paper, and is different from Ω(n, w, L), but Ω(n, w, L)

16

3.2. Limited derandomization of PPZ

could be substituted for it. A probability space S′ is assumed to be given2:
such S′ is a probability space over which n k-wise independent random
variables each take values over [m], where m is a prime power larger than
n3, and such that |S′| = O(n3k). S ⊆ S′ is then defined as the event that all
the n variables take distinct values. The probability of S can be estimated
to be greater than 1− 1/n: since k ≥ 2, the elements are at least pairwise
independent; the probability that two given elements have the same value
is less than 1

n3 (because m ≥ n3), so by the union bound, the probability that

any two elements is less than (n
2)

n3 , which yields the desired probability. We
can, in that case, interpret an element of S as a permutation of the variables
of the formula.

In the PPZ algorithm, a sufficient condition for a clause {x} or {x̄} to exist
at a given step is that x is the latest variable processed in a critical clause.
The probability that a given variable x is last in a t-clause, with t ≤ k, given
that all variables have a unique place in the clause, is 1

t . Hence, in S, we get:

Pr
π∈S

[x is last in π in a t-clause]

= Pr
π∈S′

[π ∈ S ∧ x is last in π in a t-clause]

= 1− Pr
π∈S′

[x /∈ S ∨ x not last]

≥ 1− (1− Pr
π∈S′

[x ∈ S])− (1− Pr
π∈S′

[x has the (possibly multiple) last place])

= 1− 1
n
− 1 +

1
t
=

1
t
− 1

n
.

This means that, by using a permutation from the family S rather than a
truly uniform permutation, a j-isolated satisfying assignment can still be
encoded using at most n− j/k + 1 bits (using the standard PPZ machinery).

Now we observe that either there is a satisfying assignment which has few
ones, or any minimal solution (with respect to the partial order defined as
α1 ≺ α2 iff, for all variable x in V, α1(x) ≤ α2(x)) has a lot of ones. And a min-
imal solution must be isolated in all the directions where a variable has the
value one. This dichotomy can be exploited in the sense that there are few
assignments that have a small number of ones (so they can be enumerated
quickly), and that a solution that is highly isolated has short codings. More
precisely, it is known that the following inequality holds for 0 < ε < 1/2
(the proof of this is stated in Appendix A.2 on page 64):

bεnc
∑
i=0

(
n
i

)
≤ 2nH(ε),

2It seems plausible that the referred construction relies on polynomial hashing defined
by Wegman and Carter[16]. Enumerating all possible polynomials of degree k− 1 over the
field [m] would yield the desired result.

17

3. First attempts at derandomizing PPZ and PPSZ

where H is the binary entropy function

H(ε) = −ε log ε− (1− ε) log(1− ε).

The following algorithm gathers all these ideas.

function dppz(F, V, ε):
Input: F CNF formula over V, 0 < ε < 1/2
Output: Satisfying assignment of F if F is satisfiable, ∅ otherwise
for each assignment α with at most ε|V| ones:

if F is satisfied by α:
return α;

end for
for each permutation π in S:

for each string β of n(1− ε/k) + 1 bits:
F′ ← F;
α← ∅;
j← 0;
for i← 1 to |V|:

x ← π(i);
if {x} ∈ F′:

b← 1;
else if {x̄} ∈ F′:

b← 0;
else if j < n(1− ε/k) + 1:

b← β(j);
j← j + 1;

else:
break;

α← α ∪ {x 7→ b};
F′ ← F′[x 7→b];

end for
end for
if α satisfies F:

return α;
end for
return ∅;

Theorem 3.3 ([12]) For 0 < ε < 1/2 such that H(ε) = 1− ε
k , the algorithm dppz

returns a satisfying assignment of a satisfiable k-CNF in O(2(1−ε/k)n+o(n)) time.

Proof The first loop checks whether there is a satisfying assignment with
at most ε|V| ones. This can be done in O(2H(ε)n+o(n)) time. If no solution
is found, any minimal satisfying assignment of F is at least (ε · n)-isolated.
Such an assignment has, consequently, at least εn critical variables and, for

18

3.3. Derandomization of PPSZ in the unique case

each critical variable, at least one critical clause. Fix one critical clause per
critical variable. When picking a permutation uniformly at random in S, the
probability that the critical variable occurs last among the variables of the
corresponding critical clause is at least 1/k − 1/n. By linearity of expecta-
tion, the expected number of critical clauses where this happens is at least
εn/k− ε/n, and this bound is achieved for some permutation of S. For that
permutation, the encoding of our εn-isolated assignment has length at most
n(1− ε/k) + 1 bits. Since we enumerate all permutations of S and all bit-
strings of length n(1− ε/k) + 1, we are guaranteed to find an εn-isolated as-
signment if it exists. Enumerating all bitstrings for all permutations requires
time at most O(n3k2n(1−ε/k)+1). The sum of these runtimes is minimized for
0 < ε < 1/2 such that H(ε) = 1− ε

k , which yields the desired result. �
The bound given here tends to O(2(1−1/(2k))n+o(n)) when k tends to infinity
(to be compared with the randomized runtime of O(2(1−1/k)n+o(n)) even for
small k).

3.2.1 Derandomization of PPZ in the j-isolated or unique case

If we are guaranteed that there exists a j-isolated assignment for the formula
F, then we can skip the step of checking for assignments with few ones, and
we can directly run through the strings of length n(1 − j/k) + 1 bits and
be guaranteed to find a satisfying assignment if it exists. In particular, this
reduces the running time to O(2n−j/k+o(n)) for j-isolated assignments and to
O(2n(1−1/k)+o(n)) for unique or n-isolated assignments.

3.3 Derandomization of PPSZ in the unique case

In this section, we study the work of Rolf [13] and adapts it to the framework
and notations defined in [17] and used in [6].
We discuss the proof of the following theorem:

Theorem 3.4 ([13]) For a uniquely satisfiable k-CNF on n variables, integers D >
0, L > 0, there exists a deterministic algorithm dPPSZ that finds the satisfying
assignment in deterministic running time at most

O
(

2−Skn+εk,D,Ln
)

,

where Sk =
∫ 1

0
t1/(k−1)−t

1−t dt and

lim
L→∞

lim
D→∞

εk,D,L = 0.

This theorem readily implies the following:

Theorem 3.5 ([13]) For a uniquely satisfiable 3-CNF resp. 4-CNF on n variables,
the satisfying assignment can be found in deterministic running time at most
O(1.3071n) resp. O(1.4699n).

19

3. First attempts at derandomizing PPZ and PPSZ

3.3.1 Properties of the random permutation

In the randomized PPSZ analysis, we consider a permutation as a set of
values picked independently and uniformly at random from the interval
[0, 1] and ordering the variables according to these values. In this section,
we consider what happens if, instead, we define a permutation π from the
mapping defined when picking places from Ω(n, w, L): we define it as “u
comes before v if π(u) < π(v)”, breaking ties arbitrarily.
In the standard PPSZ version, since we pick the place of elements uniformly
at random independently from [0, 1], the probability, for a fixed variable x,
that some variable u comes before x in the permutation is exactly the place
of x. This is not true anymore in Ω(n, w, L): first, it can happen that x and
u end up having the same place (since the set A(L) is finite) and, even if the
elements are all distinct, the probability that u comes before x itself is not
exactly π(x) anymore. We have the following situation, for a set of variables
B that would correspond to a set of variables of a CNF formula:

Lemma 3.6 ([13]) Let x ∈ [n] be a variable and B ⊆ [n] a set of variables with
|B| < w and x /∈ B. Given π ∈u.a.r. Ω(n, w, L), then the following are true:

1. The probability over Ω(n, w, L) that the value of x is unique is (1− 2−L)|B|.

2. Given that x has a unique value, all π(u) with u ∈ B are independent, and
for each u ∈ B, the probability that π(u) < π(x) (i.e. that u comes before x
in the random permutation) is equal to π(x) · 2L/(2L − 1).

Proof Since x /∈ B, the probability that x doesn’t get attributed the same
value as any element of B is (1− 2−L)|B| because the probability that any
given element of B has the same value is (1− 2−L), and |B| < w so all the
values are independent.
Now we condition on the fact that no element of B has the same value as x.
All elements can still be seen as being drawn independently at random from
A(L)\{π(x)}. Moreover, there is exactly π(x) · 2L elements of A(L)\{π(x)}
that are strictly less than π(x), and a total of 2L − 1 elements total in that
set, to be chosen uniformly at random. Hence, the probability that a given
element u comes before x in B is π(x) · 2L/(2L − 1). �

3.3.2 Reachable nodes in critical clause trees

The initial proof from Rolf [13] uses, as in the analysis of the unique PPSZ
case [11], resolution and cuts in critical clause trees to prove the bounds of
the unique case derandomization. The version of the proof that we give
here translates these notions to the notions of D-implication (as in [5]) and
reachable nodes in the critical clause trees (as in [17]), but is otherwise the
same proof.
We have given in Section 2.2.2 on page 11 the definition of critical clause
trees and the definition of reachable nodes. We also recall here the crucial

20

3.3. Derandomization of PPSZ in the unique case

lemma that allows to relate the reachable nodes to the fact that a variable is
forced:

Lemma 2.10 ([17]) If we have |Reachable(Tx, π(x), π)| ≤ D, then it holds as well
that x is forced.
The main idea of the derandomization is, as in the PPZ case, that we do not
need full independence over the places of the variables to prove that the set
of reachable variables is small. In particular, if the resulting tree has height
at most logk−1 D− 1, then it is guaranteed that said resulting tree will have
less than D reachable nodes. The crucial observation there is that, to check
whether a tree, after removing nodes, has height at most logk−1 D− 1, it is
enough to limit the depth of the original tree to logk−1 D, which corresponds

to D(k−1)−1
k−2 nodes in total at most. Let us denote w = D(k−1)−1

k−2 . Instead of
building full critical clause trees, we limit the depth of these to logk−1 D, and
we use permutations from Ω(n, w, L) on these trees. On such a tree, since
the permutations are w-wise independent sets of n variables, all the places
are picked independently of each other.
Hence, we can consider a critical tree Tx that is limited at depth logk−1 D,
and we delete every node whose place is less than the place of x. We define
r = π(x) · 2L/(2L− 1) (corresponding to the probability that the place of the
var-label of a given node is less than the place of x), and, for any subtree
T0 of T that has root v, we define QT0(r) the probability that the tree T0 has
height h(T0) such that h(v) + h(T0) ≤ logk−1 D − 1. The beginning of the
proof of the lower bound for QT0(r) is similar to the one for the general case
[11]; since our “usual” proof for the PPSZ unique case is slightly different in
[17] and [6], we give it here.

Lemma 3.7 ([13], adapted) Given a critical tree T, where every node is deleted if
its place is less than the place of x, let T0 be some subtree of T with more than one
node and let T1, ..., Tt be the subtrees rooted at the children of the root of T0. Let
u1, ..., ut be their roots. Then it is true that

QT0(r) ≥
t

∏
i=1

(r + (1− r)QTi(r))

holds, where the empty product is interpreted as 1.

Proof For each tree T1, ..., Tt, the root of Ti is deleted with probability r, or
Ti must be of height h(ui) such that h(ui) + h(Ti) ≤ logk−1 D − 1, which
happens with probability QTi(r). For each of these subtrees, since they
are part of critical clause trees, the other var-labels of the tree are differ-
ent from ui. Hence, these events are independent and, for each tree Ti, the
probability that this subtree is compatible with the desired total height is
r + (1− r)QTi(r).

21

3. First attempts at derandomizing PPZ and PPSZ

We denote by Ki the event “the subtree Ti is compatible with the desired total
height”. We can then use the FKG inequality (see Appendix A.3 on page 64)
in the same fashion as in the standard PPSZ analysis ([17]) to conclude that

QT0(r) = Pr

[
t⋂

i=1

Ki

]
≥

t

∏
i=1

r + (1− r)QTi(r),

which concludes our proof. �
By multiplying this probability with the probability that the places are, in-
deed, different from the place of x, this implies the following corollary, since
the tree contains at most w nodes:

Corollary 3.8 [13] Given a critical clause tree T limited to depth logk−1 D with
root labeled by x and given that π(x) = p, the probability that the height of T
after deleting the nodes whose place is before x is less than logk−1 D− 1 is at least
Q′T(p), with

Q′T(p) = QT(p · 2L/(2L − 1)) · (1− 2L)w−1.

This probability is defined for a fixed p; now we need to consider the uncon-
ditional probability over the whole domain p ∈ A(L). This yields:

2−L
2L−1

∑
l=0

Q′T(l/2L) = 2−L
2L−1

∑
l=0

QT

(
l

2L − 1

)
· (1− 2−L)w−1.

If L grows to infinity, this yields:

lim
L→∞

2−L
2L−1

∑
l=0

QT

(
l

2L − 1

)
· (1− 2−L)w−1

= lim
L→∞

(1− 2−L)w−1
2L−1

∑
l=0

1
2L QT

(
l

2L − 1

)

= lim
L→∞

(1− 2−L)w−1
2L−1

∑
l=0

1
2L − 1

QT

(
l

2L − 1

)
=
∫ 1

0
QT(p) dp,

by definition of the Riemann integral, since it has been proven in [11] that
this integral exists (which allows us to do the above computation) and that
it tends to 1− Sk when D grows to infinity. For D going to infinity, the differ-
ence between the sum and 1− Sk can be made arbitrary small by choosing
L large enough. A slowly growing function L still yields a sub-exponential
construction of Ω(n, w, L). We denote by εk,D,L the difference between the
sum and 1− Sk.

22

3.3. Derandomization of PPSZ in the unique case

3.3.3 A derandomized algorithm

The previous section allowed us to establish that, when picking permuta-
tions from Ω(n, w, L), with L and D tending to infinity, the probability
that a cut happened in a critical clause tree was at least

∫ 1
0 QT(p)dp =

1− (Sk− εk,D,L). If a cut happens, then the variable corresponding to the crit-
ical clause tree is forced. By linearity of expectation, the expected number
of forced variables when picking permutations uniformly at random from
Ω(n, w, L) is n(1− Sk + εk,D,L). Hence, there is a permutation in Ω(n, w, L)
for which this number is achieved. When a variable is forced, no random bit
is consumed. Hence, for a “good” permutation and a “good” choice of ran-
dom bits, we will consume at most (Sk + εk,D,L)n bits. Considering bitstrings
of that length only is consequently sufficient, which allows us to state the
following derandomized algorithm:

function dppsz(F, V, L, D):
Input: F uniquely satisfied CNF formula over V, L and D ∈N0
Output: Satisfying assignment of F
for each π ∈ Ω(|V|, D(k−1)−1

k−2 , L):
for each β ∈ {0, 1}dn(Sk+εk,D,L)e:

F′ ← F;
α← ∅;
j← 0;
for i← 1 to |V|:

x ← π(i);
if F′ � (x 7→ 1):

b← 1;
else if F′ � (x 7→ 0):

b← 0;
else if j < dn(Sk + εk,D,L)e:

b← β[j];
j← j + 1;

else:
break;

α← α ∪ {x 7→ b};
F′ ← F′[x 7→b]

end for
if α satisfies F:

return α;
end for

end for

The correctness of the algorithm follows from the analysis of this section.
The runtime can be computed as follows:
• we can construct and enumerate Ω(n, D(k−1)−1

k−2 , L) in time O(nLw/2),

23

3. First attempts at derandomizing PPZ and PPSZ

which stays subexponential for L and D slowly growing functions of
n,

• we can enumerate all bit strings of length dn(Sk + εk,D,L)e in time
O(2dn(Sk+εk,D,L)e+o(n)),

• we can check whether F′ D-implies a literal in subexponential time for
D a slowly growing function of n.

This concludes the proof of the theorem.

24

Part II

Elements for the
derandomization of PPSZ

25

Chapter 4

Derandomization plan

Our derandomization plan was proposed by Timon Hertli and Robin Moser
in private communications and discussions. They made a number of sug-
gestions and hypotheses that directed the core of this thesis.

4.1 Main ideas for derandomization

There exists a trivial way to derandomize PPSZ: enumerate all permutations
of variables and all bitstrings of size n, and check if PPSZ returns a satisfying
assignment. By doing so, if a formula is satisfiable, then a satisfying assign-
ment will necessarily be found; and if no satisfying assignment is found,
we are guaranteed that the formula is unsatisfiable. This is, however, very
inefficient: the runtime for such an algorithm would be Ω(n!2n), and it is
actually enough to enumerate all possible bitstrings (in Θ(2n) time) to guar-
antee these properties: this would represent a superexponential speed-up
compared to our trivial derandomization.
However, this derandomization can be improved in a number of ways. First,
as we have seen in Section 3.3, Rolf [13] proved that, if the formula was
guaranteed to have a unique satisfying assignment, it was enough to con-
sider a sub-exponential number of permutations and smaller bitstrings to
be guaranteed that a “good” permutation and a “good” bitstring will be
encountered if such exists.
Following the same lines, we try to see where random bits can be saved, and
hope that enumerating the remaining ones that we are not able to save will
yield non-trivial runtimes.
The first conjecture is that, as in the unique case, it is enough to consider
d-wise independence, for some value of d (ideally constant), in lieu of full
independence for the choice of the permutation. If this is true and if d is
small enough, then we will be able to enumerate a set of such permuta-
tions in (hopefully) subexponential time or (if needed) low exponential time.

27

4. Derandomization plan

This would take care of the n! factor in the runtime of the derandomized
algorithm.
The other random bits are coming from the fact that, when the value of a
variable is not forced, a random bit is used. However, there are two ways
for a variable to not be forced: it can be frozen but not forced, or it can be
non-frozen. If a variable is frozen but not forced, there is not much that
can be done except trying to guess it, hence the consumption of a random
bit. On the other hand, if a variable is non-frozen, then whatever choice is
made is a valid choice – it will only steer the algorithm towards an assign-
ment or another. Hence, if we choose, to set any non-frozen variable to a
deterministic value, this allows us to save the random bits corresponding to
the non-frozen variables, while hopefully not degrading the probability of
returning a satisfying assignment too much.
It makes sense, as a first step, assume that we are given an oracle that allows
us to set non-frozen variables to 0 when we encounter them. The main
question here is how would that setup impact the success probability of
PPSZ. If the success probability of PPSZ with oracle can be established, such
an oracle must also be built and run in a subexponential or low exponential
runtime to be at all useful – which might be possible for a slightly weaker
oracle.

4.2 Questions explored in this thesis

For the aforementioned plan to come together, a number of questions need
to be answered. We will divide them in the four following chapters, which
are organized as follows.
Chapter 5 is an alternative proof of the runtime bound for PPSZ in the mul-
tiple satisfying assignments case. Instead of considering the probability of
success for all assignments at once, we prove a lower bound for the proba-
bility that a specific satisfying assignment is returned. By disentangling the
assignments from each other, we hope to facilitate further progress on the
PPSZ derandomization a bit.
In Chapter 6, we try to answer the question “Can PPSZ be run with the same
success probability if we consider a small subset of permutations instead of
all possible permutations?”. As we will see, this question is still open; we
have however gained some insight on the reasons why this may be difficult
to prove.
In Chapter 7, we present our work on the question of what happens if we
introduce an oracle that sets non-frozen variables to 0: we are interested in
the probability of success of PPSZ with such an oracle. We prove, as a first
step, that the success probability of PPZ stays bounded by the same value
with or without an oracle. We then show that, for PPSZ, if the probability
of a frozen variable to be guessed stays the same (or becomes larger) when

28

4.2. Questions explored in this thesis

using the oracle, then we also get the same bound for the multiple satisfying
assignment case whether we use the oracle or not. We also raise the question
of whether such an oracle would be at all realistic, and we suggest some
directions that may be interesting to pursue on that matter.
Finally, in Chapter 8, we will wrap up our findings and explain what still
needs to be done to derandomize PPSZ according to our plan. We explain
some of our thoughts on the matter of the oracle construction, and we for-
mulate some questions that may guide future research on the topic of the
derandomization of PPZ and PPSZ.

29

Chapter 5

Probability of returning a given
assignment

The original proof of the PPSZ bound for the multiple satisfying assign-
ments case [5] relies on the fact that, over the whole set of assignments, the
likelihood and the cost of the assignments compensate nicely, and that al-
lows us to conclude that the bound actually holds. The success probability
of the algorithm is computed over all possible satisfying assignments. The
probability of returning a given satisfying assignment was however, so far,
an open question.
In this chapter, we prove the following theorem:

Theorem 5.1 Let α0 s.t. F[α0] is satisfiable. Then the probability that PPSZ outputs
a given satisfying assignment α when starting in state α0 is at least lkhd(α0, α) ·
2−cost(α0,α).

Proof In what follows, we consider a fixed satisfying assignment α. This
proof is by induction; we suppose that the claim holds for all α0 that fix a
larger number of variables. If α0 is total, then the statement holds trivially.
Let us denote by p(α0, α) the probability that PPSZ outputs α when starting
from state α0. Let x and b be random variables: x ∈ U (α0) u.a.r., and b is the
forced value by D-implication if x ∈ Vfo(α0) and u.a.r. otherwise. We have:

p(α0, α)

= Pr
x∈u.a.rU (α0);b

[(x, b) ∈ α ∧ PPSZ(F, V, α0 ∪ {x 7→ b}, D) returns α]

= Pr
x∈u.a.rU (α0);b

[(x, b) ∈ α] · E
x∈u.a.rU (α0);b

[p(α ∪ {x 7→ b}, α) | (x, b) ∈ α]

=
n(α0) + |Vfo(α0)|

2n(α0)
E

x∈u.a.rU (α0);b
[p(α ∪ {x 7→ b}, α) | (x, b) ∈ α].

We now relate the expectation over “x, then b” to the expectation over
(x, b) ∈ α (or, equivalently, “choose x u.a.r. in U (α0) and set it to α(x)”).

31

5. Probability of returning a given assignment

The difference between these two expectations is that, in the second expec-
tation, the weight of variables in Vfo(α0) is twice the weight of the other
variables; we define

w(x) =

{
2 if x ∈ Vfo(α0)

1 otherwise
.

To then form the expectation, we need a normalization factor so that
the probabilities sum to 1. The normalization factor for these weights is

n(α0)
|n+Vfo(α0)| and so we get

p(α0, α) =
n + |Vfo(α0)|

2n(α0)
E

x∈u.a.rU (α0)

[
n(α0) · w(x)
n + |Vfo(α0)|

· p(α0 ∪ {x 7→ α(x)}, α)

]
=

1
2

E
x∈u.a.r.U (α0)

[w(x) · p(α0 ∪ {x 7→ α(x)}, α)].

In the usual analysis, here we would apply the induction hypothesis and
use Jensen’s inequality before continuing the computation. This approach
does not seem to work as well as in the general case. This failure can be
explained by the presence of a likelihood term in the expression when ap-
plying directly the induction hypothesis. The likelihood is not very concen-
trated, and we can observe in some cases “jumps” when fixing a variable.
Consider for instance the case of a formula with the following satisfying
assignments: 000...000 (the all-zero assignment), and all the assignments of
type 100..000, 010...000, ..., 000...001 (all the assignments that have exactly
one 1). The likelihood of the all-zero assignment is 2−n (we need to choose 0
for all the n variables); by symmetry, the likelihood of any other assignment
is (1− 2−n)/n. However, when setting any variable to 1, the likelihood of
the corresponding assignment becomes 1. As discussed in [14] (Section 6.3),
“As a rule of thumb, Jensen’s inequality is pretty tight if [the considered
random variable] is very concentrated around its expectation”.
To take care of this issue, we introduce a new distribution over the variables
of U (α0) which brings the likelihood inside the probability distribution. By
moving the likelihood into the distribution used for the expectation, we hope
that the likelihood will cancel out thanks to the induction hypothesis and
that things will work out as desired. We denote by ξ the distribution over the
variables of U (α0) weighted, for any variable x, according to lkhd(α0 ∪ {x 7→
α(x)}, α). We have that

lkhd(α0, α) = E
(x,b)∈u.a.r.Sα0

lkhd(α0 ∪ {x 7→ α(x)}, α)

= ∑
x∈U (α0)

1
|Sα0 |

lkhd(α0 ∪ {x 7→ α(x)}, α),

32

which allows us to determine the sum of all the weights, and so the proba-
bility of any variable x for the distribution ξ is given by

pξ(x) =
lkhd(α0 ∪ {x 7→ α(x)}, α)

|Sα0 | · lkhd(α0, α)
.

We now want to introduce this probability distribution in our current expres-
sion for p(α0, α):

p(α0, α)

=
1
2

E
x∈u.a.r.U (α0)

[w(x) · p(α0 ∪ {x 7→ α(x)}, α)]

=
1
2 ∑

x∈U (α0)

w(x)
n(α0)

· p(α0 ∪ {x 7→ α(x)}, α)

=
1
2 ∑

x∈U (α0)

w(x)
n(α0)

· lkhd(α0 ∪ {x 7→ α(x)}, α)

|Sα0 | · lkhd(α0, α)
· |Sα0 | · lkhd(α0, α)

lkhd(α0 ∪ {x 7→ α(x)}, α)

· p(α0 ∪ {x 7→ α(x)}, α)

=
1
2 ∑

x∈U (α0)

w(x) · |Sα0 | · lkhd(α0, α)

n(α0)

· lkhd(α0 ∪ {x 7→ α(x)}, α)

|Sα0 | · lkhd(α0, α)
· p(α0 ∪ {x 7→ α(x)}, α)

lkhd(α0 ∪ {x 7→ α(x)}, α)

=
1
2
|Sα0 | · lkhd(α0, α)

n(α0)
E

x∈ξU (α0)

[
w(x) · p(α0 ∪ {x 7→ α(x)}, α)

lkhd(α0 ∪ {x 7→ α(x)}, α)

]
.

We apply the induction hypothesis and we get

p(α0, α)

≥ 1
2
|Sα0 | · lkhd(α0, α)

n(α0)

· E
x∈ξU (α0)

[
w(x) · lkhd(α0 ∪ {x 7→ α(x)}, α) · 2−cost(α0∪{x 7→α(x)},α)

lkhd(α0 ∪ {x 7→ α(x)}, α)

]

=
1
2
|Sα0 | · lkhd(α0, α)

n(α0)
E

x∈ξU (α0)

[
w(x) · 2−cost(α0∪{x 7→α(x)},α)

]
.

Now that we have gotten rid of the likelihood in the expectation, we use
Jensen’s inequality (see Appendix A.1 on page 63) with the convex function
x 7→ 2−x and we get:

p(α0, α) ≥ lkhd(α0, α)2−1+log
|Sα0 |
n(α0)

+Ex∈ξU (α0)
[log w(x)]+Ex∈ξU (α0)

[−cost(α0∪{x 7→α(x)},α)].

We will then need the following lemma:

33

5. Probability of returning a given assignment

Lemma 5.2 For a fixed α, we have

E
x∈ξU (α0)

[cost(α0 ∪ {x 7→ α(x)}, α)] ≤ cost(α0, α)− |Vfr(α0)|
|Sα0 |

− 2S(D)
k |Vnf(α0)|
|Sα0 |

.

Proof We have, by definition of the expectation:

E
x∈ξU (α0)

[cost(α0 ∪ {x 7→ α(x)})]

= ∑
x∈U (α0)

lkhd(α0 ∪ {x 7→ α(x)}, α)

|Sα0 | · lkhd(α0, α)
· cost(α0 ∪ {x 7→ α(x)}, α)

=
n(α0)

|Sα0 | · lkhd(α0, α)

· E
x∈u.a.r.U (α0)

[lkhd(α0 ∪ {x 7→ α(x)}, α) · cost(α0 ∪ {x 7→ α(x)}, α)].

To work with this expression, we invoke a correlation inequality that is used
in [17] and [6] (we defer its proof to Appendix A.6 on page 67):

Lemma 5.3 ([17]) Let A, B ∈ R be random variables and a, b, ā, b̄ ∈ R fixed
numbers such that A ≥ a and B ≤ b always, and E[A] = ā and E[B] = b̄. Then

E[A · B] ≤ ab̄ + bā− ab.

Using Lemma 2.14 on page 14, and by defining A = lkhd(α0 ∪ {x 7→
α(x)}, α), a = lkhd(α0, α), ā =

(
1 + |Vnf(α0)|

n(α0)

)
lkhd(α0, α), B = lkhd(α0 ∪

{x 7→ α(x)}, α), b = cost(α0, α), b̄ ≤ cost(α0, α) − |Vfr(α0)|
n(α0)

− S(D)
k |Vnf(α0)|

n(α0)
, we

get

E
x∈u.a.rU (α0)

[lkhd(α0 ∪ {x 7→ α(x)}, α) · cost(α0 ∪ {x 7→ α(x)}, α)]

≤ lkhd(α0, α) ·
(

cost(α0, α)− |Vfr(α0)|
n(α0)

− S(D)
k |Vnf(α0)|

n(α0)

)

+ cost(α0, α) ·
(

1 +
|Vnf(α0)|

n(α0)

)
· lkhd(α0, α)

− cost(α0, α) · lkhd(α0, α)

= lkhd(α0, α) ·
(
|Sα0 |
n(α0)

cost(α0, α)− |Vfr(α0)|
n(α0)

− S(D)
k |Vnf(α0)|

n(α0)

)
.

Plugging this in our expression yields the desired result. �
Back to our main computation, let us deal with the E[log w(x)] term. Ob-
serve that

E
ξ
[log w(x)] = Pr

ξ
[w(x) = 2] = Pr

ξ
[x is forced].

34

When x is forced, lkhd(α0 ∪ {x 7→ α(x)}, α) = lkhd(α0, α), and so

E
ξ
[log w(x)] =

|Vfo(α0)|
|Sα0 |

.

Finally, we deal with the log
|Sα0 |
n(α0)

in the same way than in the standard PPSZ
proof, by using the following inequality (see Appendix A.4 on page 66):

log(1 + x) ≥ log(e)
x

1 + x
.

We have:

log
|Sα0 |
n(α0)

= log
n(α0) + |Vnf(α0)|

n(α0)

= log
(

1 +
|Vnf(α0)|

n(α0)

)
≥ log(e)

|Vnf(α0)|
n(α0) + |Vnf(α0)|

= log(e)
|Vnf(α0)|
|Sα0 |

.

Putting all these elements together, we get that

p(α0, α) ≥ lkhd(α0, α) · 2−1+ |Vfo(α0)|
|Sα0 |

+log(e) |Vnf(α0)|
|Sα0 |

−cost(α0,α)+ |Vfr(α0)|
|Sα0 |

+
2S(D)

k |Vnf(α0)|
|Sα0 | .

For our theorem to hold, we need that

−1 +
|Vfo(α0)|
|Sα0 |

+ log(e)
|Vnf(α0)|
|Sα0 |

+
2S(D)

k |Vnf(α0)|
|Sα0 |

+
|Vfr(α0)|
|Sα0 |

≥ 0.

This is true if log(e) + 2S(D)
k ≥ 2; since S(D)

k ≥ S(D)
3 and log(e) + 2S(D)

3 >
1.44 + 2 · 0.38 > 2, we are done. �
This theorem allows us to get an alternative proof for the overall bounds for
PPSZ. We have:

Pr[PPSZ succeeds] = ∑
α∈sat(F)

Pr[PPSZ returns α]

≥ ∑
α∈sat(F)

lkhd(α0, α)2−cost(α0,α).

Since the likelihood can be seen as a probability distribution over the assign-
ments, we can see this expression as an expectation over α picked according
to this distribution:

Pr[PPSZ succeeds] ≥ E
α

[
2−cost(α0,α)

]
,

35

5. Probability of returning a given assignment

and apply Jensen to this:

Pr[PPSZ succeeds] ≥ 2−E[cost(α0,α)]

= 2−∑α∈sat(F) lkhd(α0,α)cost(α0,α)

= 2−cost(α0) ≥ 2−S(D)
k n.

36

Chapter 6

PPSZ with a smaller permutation set

As we have previously observed, the derandomization of PPSZ needs to
address two sources of randomness: the random permutation used to run
the algorithm, and the random bits used to build the assignment when the
processed variable is not forced. A natural question, before looking at the
global derandomization plan, is to ask whether PPSZ itself can run with a
smaller subset of permutations than the complete permutation set, and what
conditions would be sufficient (and/or necessary) for such a permutation set
for the proof to go through. We investigate these questions in this chapter.

6.1 The set Ω(n, w, L)

The derandomization of PPSZ in the unique case by Rolf [13] uses a con-
struction for a “w-wise independent probability space for n variables with
precision L”, denoted by Ω(n, w, L), and described in Section 3.1 on page 15.
The use of this set of permutations does not, however, directly translate into
a proof for the multiple satisfying assignments case. In this section, we will
explain two problems that we have identified: the probability that a variable
is forced, and the variations in the likelihood.

6.1.1 Probability of a variable to be guessed

The proof of Rolf shows that, for a variable that is frozen at the beginning
of the algorithm, the probability that it is guessed is

Pr
π∈Ω(n,w,L)

[x ∈ Guessed(F, α0, α, π, D)] ≤ S(D)
k .

What happens when a variable is unfrozen at the beginning of the algo-
rithm but becomes frozen after some steps is, however, unclear. Giving α0
as a parameter restricts the set of permutations to the ones that start with
the variables of α0; we haven’t found any compelling argument to exclude

37

6. PPSZ with a smaller permutation set

the possibility that a partial assignment that freezes a variable would also
be only compatible with permutations such that the probability that said
variable is guessed is greater than S(D)

k .
Another possible issue is that, even if the probability of a variable being
guessed does not get larger than S(D)

k , the proof of the previous chapter
(and the original proof of the PPSZ success probability) relies on the fact that
the cost never increases. When considering, as in Lemma 2.14 on page 14,
cost(α0, α, y) and cost(α0 ∪ {x 7→ α(x)}, α, y), the cost of a single variable
could increase when adding a single other variable to the mix, because the
probability that a variable is guessed could increase when considering sub-
sets of permutations that are compatible, respectively, with α0 and with
α0 ∪ {x 7→ α(x)}. Defining an order for α0 would help here (because we
would not re-add permutations to the set of compatible permutations), but
it would not for the previous issue.

6.1.2 Likelihood evolution

The usual proof for all permutations also uses the fact that the likelihood of
a satisfying assignment cannot decrease when adding a compatible variable
assignment. Specifically, it relies on the fact that, for a fixed variable x, we
have that lkhd(α0, α) ≤ lkhd(α0 ∪ {x 7→ α(x)}, α). The likelihood as defined
in the standard proof does not correspond to the case of picking permuta-
tions in Ω(n, w, L). In particular, Eπ∈Ω(n,w,L) lkhd(α0, α) does not seem to
make much sense. To correct this, we introduce the notion of Ω-likelihood.
In what follows, we will consider that α0 is an ordered partial assignment,
that is to say that we also consider the order in which the variables are
assigned as a part of a partial assignment.

Definition 6.1 Let F[α0] be satisfiable and let Sα0 be the set of value assignments
l = (x 7→ b) such that x ∈ U (α0) and F[α0[l]] is satisfiable. To each of these elements,
we assign a weight equal to the probability that x is chosen next in Ω, conditioned
on the fact that the permutation starts with the variables of α0 (in its order); and
we define a probability distribution Ψ over Sα0 according to these weights. We will
denote these weights wα0(l) (or wα0(x, b) for every value assignment l = (x 7→ b)).
We define the random process AssignSLΩ(F, α0) that produces an assignment of
vbl(F) as follows. Start with the assignment α0, and repeat the following step
until vbl(F[α0]) = ∅: Choose a value assignment l ∈ Sα0 according to Ψ and
add l to α0. At the end, output α0. Let α be a total assignment on vbl(F). Then
the Ω-likelihood of completing α0 to α, in writing lkhdΩ(α0, α), is defined as
the probability that AssignSLΩ(F, α0) returns α. For completeness, if F[α0] is not
satisfiable, or if α0 is chosen such that no variable x can be chosen next in Ω, we
define lkhdΩ(α0, α) = 0.
We can now try to prove by induction that lkhdΩ(α0, α) ≤ lkhdΩ(α0 ∪ {x 7→
α(x)}, α). We suppose that the statement is true for large assignments α0 (if

38

6.1. The set Ω(n, w, L)

α0 is a complete assignment, the statement holds trivially). We try to express
lkhdΩ(α0, α) as an expression depending on lkhdΩ(α0 ∪ {x 7→ α(x)}, α) by
separating the lkhdΩ(α0 ∪ {x 7→ α(x)}, α) from the rest of the expression
when applying the definition of the expectation of the likelihood over all
literals (which is equal to lkhdΩ(α0, α). In the end, this will fail because we
do not know how to relate the weight of a variable x′ with regard to α0 and
with regard to α0 ∪ {x 7→ α(x)}. Formally, we have:

lkhdΩ(α0, α)

= E
(x′,b′)∈ΨSα0

[
lkhdΩ(α0 ∪ {x′ 7→ b′}, α)

]
= ∑

(x′,b′)∈Sα0

wα0(x′, b′)
∑(x′′,b′′)∈Sα0

wα0(x′′, b′′)
lkhdΩ(α0 ∪ {x′ 7→ b′}, α)

= ∑
x′∈U (α0)

wα0(x′, α(x′))
∑(x′′,b′′)∈Sα0

wα0(x′′, b′′)
lkhdΩ(α0 ∪ {x′ 7→ α(x′)}, α)

=
wα0(x, α(x))

∑(x′′,b′′)∈Sα0
wα0(x′′, b′′)

lkhdΩ(α0 ∪ {x 7→ α(x)}

+ ∑
x′∈U (α0)\{x}

wα0(x′, α(x′))
∑(x′′,b′′)∈Sα0

wα0(x′′, b′′)
lkhdΩ(α0 ∪ {x′ 7→ α(x′)}, α)

≤ wα0(x, α(x))
∑(x′′,b′′)∈Sα0

wα0(x′′, b′′)
lkhdΩ(α0 ∪ {x 7→ α(x)})

+ ∑
x′∈U (α0)\{x}

(
wα0(x′, α(x′))

∑(x′′,b′′)∈Sα0
wα0(x′′, b′′)

· lkhdΩ(α0 ∪ {x′ 7→ α(x′)} ∪ {x 7→ α(x)}, α)

)
,

by induction hypothesis. Now the problem is that we cannot really continue
this computation, because we do not know how wα0(x′, α(x′)) compares to
wα0∪{x 7→α(x)}(x′, α(x′)). We do not run into that sort of problems in the usual
case, because all variables have the same probability of being next in any sub-
set of permutations compatible with α0, and so we can relate the likelihood
before the new assignment and after the new assignment.

These problems make the choice of Ω(n, w, L) an unlikely candidate to be
able to prove that PPSZ can work with a smaller permutation set within this
proof framework. A proof that does not rely on induction might be able to
use it, but such a proof seems out of our grasp so far.

39

6. PPSZ with a smaller permutation set

6.2 A block-wise construction for permutations

The previous attempt left us with the idea that, for PPSZ to work on a
restricted set of permutations, this set of permutations needed to have both
some measure of w-wise independence and some measure of uniformity. In
this section, we will explain a simple construction for permutations sets that
may give us both these properties. As we will see, an analogous proof to the
proof of Chapter 5 fails to go through because we are not able to control the
bad correlations that may happen between two variables.

6.2.1 Construction of the permutation set

The crucial observation for this permutation set is that we do not necessarily
need a full w-wise independence, but that only the sets of variables appear-
ing in the critical clause trees for a given assignment are actually needed.
An approximate construction should consequently be “good enough” if it
works for a large number of critical clause trees.
The basic construction works as follows:

1. Create a set of n w-wise independent random variables, taking their
values in [1, ...,

√
n].

2. Assign each variable of the formula to one of the generated random
variables: this corresponds to the block a variable is assigned to.

3. In each block, sort the variables in an arbitrary order (for instance the
lexicographic order of the variable names).

4. For each of these base permutations, generate a set of (
√

n)! permuta-
tions by considering all the possible orders of blocks.

5. Execute PPSZ on each with each of these sets of permutations.
This generates a permutation set of size (

√
n)! for every set of the initial

random variables. We now need to address the creation of these random
variables, and the relation of our sets of permutations to the critical trees.

A set of n w-wise independent random variables

The lemmas and proofs of this section are based on an exercise given in
the SAT class at ETHZ in 2012 [18]. We will prove the following lemma,
which we will then use with t =

√
n to get the construction discussed in the

beginning of this section:

Lemma 6.2 Let w be a constant and t > 0. There exists a code C ⊆ {0, 1}r

of length r = 22ww2 log2 n of size |C| = t with the following property. Let
Y1, Y2, ..., Yr be a supply of mutually independent random variables distributed uni-
formly among the numbers {0, ..., t− 1}. Let {c1, c2, ..., ct} = C be the codewords.

40

6.2. A block-wise construction for permutations

Consider the n random variables X1, ..., Xn defined as

Xi =
r

∑
j=1

(ci)j ·Yj mod t

Then for any w-tuple i1, i2, ..., iw ∈ {1...t} of pairwise distinct indices and for all
i ∈ {i1, ..., iw}, j ∈ {1...w}, the probability that all values Xi1 , ..., Xiw are distinct
and that Xi is the j-th value is at least 1/w − w/t. Moreover, this code can be
generated in subexponential time in n.
To prove this lemma, we will need an auxilliary lemma:

Lemma 6.3 Let w be some constant and t > 0. There exists a code C ′ ⊆ {0, 1}r

of length r = 2ww log n of size |C ′| = t1/2 with the property that for any w-tuple
c1, ..., cw of codewords, there exists indices i1, i2, ..., iw such that cj is (among the
w-tuple) the unique codeword where the ij-th bit is one, for all 1 ≤ j ≤ w. This
code can be generated in subexponential time.

Proof The existence argument is probabilistic. Suppose we draw c1, c2, ...c|C ′|
independently and uniformly at random from {0, 1}r, Consider w fixed pair-
wise distinct indices i1, i2, ..., iw. The probability that there is no index j such
that (ci1)j = 1 whereas (cik)j = 0 for all 2 ≤ l ≤ w is (1− 2−w)r. Since there
are |C ′|w possibilities to pick w elements among |C ′|, the probability of a
“bad” event to happen for our choice of c1, ..., c|C ′| is, by the union bound, at
most |C ′|(1− 2−w)r. If we now plug in the values from the lemma, this yields
a probability of t1/2w(1 − 2−w)2ww log n ≤ t1/2we−w log n = o(1) if t = o(n).
Hence, the desired code exists. The subexponential time generation can be
achieved by considering all possible sets of size t among all the possible
codewords of size r. �
We will now use Lemma 6.3 to prove Lemma 6.2.

Proof (Lemma 6.2) We consider the code C ′ generated in Lemma 6.3 and
enumerate them in a matrix of size t1/2× 2ww log n. We then replace every 1
of this matrix by a copy of C ′ in matrix form, and every 0 by a zero matrix of
size t1/2× 2ww log n. We use this matrix as a representation for C; it is of size
t× 22ww2 log2 n as desired, and this code can be generated in subexponential
time since C ′ can be. We now need to show that this code verifies the desired
property.
The matrix definition guarantees that, for all sets of w codewords, each code-
word contains a bit that is set to 1 and that is set to 0 in all other codewords.
Consequently, for each codeword ci, there exists Yj that only appears in the
sum defining this codeword; hence, the values of the variables Xi are inde-
pendent and distributed uniformly among {0, ..., t− 1}.
Each pair fixed of variables Xi, Xj attains equal value with probability 1/t.
By a union bound, the values are all pairwise distinct with probability at
least 1−w2/t Conditioning on this, every variable has the same probability

41

6. PPSZ with a smaller permutation set

1/w to be at any place in the set of values. Hence, for any w-tuple i1, ..., iw ∈
{1...
√

n} of pairwise distinct indices and for all i ∈ {i1, ..., iw}, j ∈ {1, ..., w},
the probability that all values Xi1 , ..., Xiw are distinct (event E1) and that Xi is
the j-th value (event E2) is

Pr[E1 ∧ E2] = Pr[E2 | E1] · Pr[E1] ≥
1
w
·
(

1− w2

t

)
=

1
w
− w

t
,

as desired. �
We also observe that, even if w is actually a slowly growing function of
n (such as log log n), the code C can still be generated in subexponential
time of t, so we can fully derandomize this construction by enumeration
in subexponential time. If we now set t =

√
n, we can deterministically

construct n w-wise independent variables over the domain {1, ...,
√

n} in
subexponential time.

A block-wise construction for the set of permutations

Using the construction from Lemma 6.2, we can now set w = D (where D
is a parameter of the PPSZ algorithm) and efficiently build sets of n D-wise
independent variables that take their values between 1 and

√
n. We associate

each of these variables with one variable in our k-CNF formula. We now
build a “base” permutation for each of these sets as follows. We consider

√
n

blocks of variables. We put each formula variable in the block corresponding
to its variable (for instance variable xi associated to variable Xi that has value
j is put in block j). Then, from these “base” permutations, we generate all
(
√

n)! permutations corresponding to all the permutations of the
√

n blocks
of variables. We will then consider every set of permutations arise from a
base permutation as a set of permutations to run PPSZ on. In the end we

get
√

n22D D2 log2 n
(
√

n)! permutations in total, which stays subexponential for
slowly growing functions D of n.

6.2.2 Invalidating critical clause trees

For each base permutation, and for all satisfying assignments, we say that a
critical clause tree is invalid if it has two nodes whose var-label end up in the
same block. If this happens, we say that these two variables are in conflict
with each other. For instance, a critical clause tree where the root critical
clause has two variables in the same block would be invalidated. Ideally,
we would like to say that the expected number of invalid trees is small, and
hence that there exists a base permutation that has a low number of invalid
trees; enumerating all the base permutations would then allow to guarantee
that such a permutation is encountered. Let us see how this would work.
First, we use a crude bound on the number of possible critical clause trees
that may ever arise from a given formula. The critical clause trees that we

42

6.2. A block-wise construction for permutations

are interested in all have less than D nodes, where D is a slowly growing
function of n, say log log n in what follows. The possible number of clauses
for a k-SAT formula is O(nk). We also need to consider all the possible
subclauses, because they may also arise in later critical trees (some variables
may become frozen and hence critical during the algorithm); a given clause
can give rise to 2k subclauses at most, so we get O(2knk) = O(nk) clauses
and subclauses in total. When building a tree, we first choose the branch to
extend (and for this we have at most D possibilities, since we have at most
D nodes), to which we assign exactly one critical clause. Hence, the number
of possible critical clause trees is O((Dnk)D).
A conflict arises when more than two variables within these (at most) D
variables end up in the same bucket. Since the attribution of the buckets
(as provided by Lemma 6.2) is done such that it is D-wise independent, the
probability that two fixed variables are in conflict is equal to 1/

√
n. So the

expected number of conflicts for a given tree is (D
2)√
n = O

(
D2√

n

)
; the total

expected number of conflicts for all trees for a variable (that we bound by

the total number of trees) is then O
(
(nk)D DD+2
√

n

)
. This estimation is, unfortu-

nately, too large to be able to conclude that a small enough number of trees
is invalidated; even if our bound on the number of trees may be improved
by a more careful counting, we would not be able to bound it tightly enough
to be even O(√n). It is not enough to show that almost all trees are valid,
because it may happen that the likelihood of an assignment and the inval-
idation of the corresponding critical trees correlate in an uncontrollable or
bad way.
To circumvent this problem, we invoke the sparsification lemma [7], which
we state here:

Lemma 6.4 (Sparsification lemma [7]) For all ε > 0 and positive k, there is a
constant C so that any k-SAT formula Φ with n variables, can be expressed as
Φ =

∨t
i=1 Ψi, where t ≤ 2εn and each Ψi is a k-SAT formula of maximum degree C,

where the degree of a variable is the number of clauses in which it appears. Moreover,
this disjunction can be computed by an algorithm running in time poly(n)2εn.
In what follows, we will consider that our formula is one of the formulas
Ψi (and consequently that its variable have degree at most C, a constant).
Let us now bound the number of critical clause trees that are associated to
a given critical variable. The root node can have at most C labellings, since
the critical variable can only be in C different clauses. When building the
tree, we can choose at most D branches to extend. For the var-label of the
new node, we have at most k− 1 choices, and once the var-label is chosen,
then we have only C choices. Hence, the number of critical clause trees for
a single variables is bounded by (kDC)D, and so the expected number of
conflicts for all trees (all variables considered) is bounded by O

(
(kDC)D D2n√

n

)
,

which, for D small enough (say log log n), is o(n). Consequently, only a

43

6. PPSZ with a smaller permutation set

negligible number of variables can possibly be impacted by the invalidating
of some critical clause trees.

6.2.3 Probability of returning a given assignment

Ideally, with our permutation construction, we would be able to prove the
same bounds (up to an ε) for the probability of returning a given assignment
than in Chapter 5. In this section, we try to apply the method of the proof
given in that chapter to our current problem, and we explain where this
approach fails to yield any interesting bound.
In what follows, our set of permutations is one of the sets of (

√
n)! permuta-

tions that arise from a single “base permutation” as defined in the previous
section. We call this set of permutations Ω(B(α0)) where B(α0) is the set of
blocks of V\dom(α0). We define a block assignment {B 7→ C} as the mapping
between the ordered set of variables B and the ordered set of values C.
We start by defining block-likelihood as follows:

Definition 6.5 Let F[α0] be satisfiable and let Sα0 be the set of block assignments
{B 7→ C} such that B is in B(α0) and F[α0∪{B 7→C}] is satisfiable. We define the ran-
dom process AssignSLB(F, α0) that produces an assignment of vbl(F[α0]) as follows.
Start with the assignment α0, and repeat the following step until vbl(F[α0]) = ∅:
Choose an block assignment {B 7→ C} uniformly at random in Sα0 and add it to
α0. At the end, output α0. Let α be a total assignment on vbl(F). Then the block-
likelihood of completing α0 to α, in writing blkhd(α0, α), is defined as the probability
that AssignSLB(F, α0) returns α. For completeness, if F[α0] is not satisfiable, or if
α0 is chosen such that it is not compatible with the current block decomposition, we
define blkhd(α0, α) = 0.
We also need to slightly adapt the definition of the cost function. For this,
we define three sets of variables as follows.
• The block-non-frozen variables are the variables that are not frozen

when starting to process a block. We define this set as Vbnf(α0), and
Vbnf(α0, B) as the subset of variables that are in the block B. For x ∈
Vbnf(α0), we define cost(α0, α, x) = S(D)

k .

• The block-forced variables are the variables that are currently forced.
We define this set as Vbfo(α0), and Vbfo(α0, B) as the subset of variables
that are in the block B. For x ∈ Vbfo(α0), we define cost(α0, α, x) = 0.

• The block-frozen variables are the variables that are frozen, but that
are not forced when starting to process a block. We define this set
as Vbfr(α0), and Vbfr(α0, B) as the subset of variables that are in the
block B. For x ∈ Vbfr(α0), we define cost(α0, α, x) = Prπ∈Ω(B(α0))[x ∈
Vbfr(α0, B(x))], where B(x) is the block containing x.

44

6.2. A block-wise construction for permutations

These sets can also be seen as the sets of non-frozen, forced and frozen
variables when only looking at them between the processing of the different
blocks.

We would like to prove that p(α0, α) = blkhd(α0, α) · 2−cost(α0,α), where
p(α0, α) is the probability that PPSZ returns α when starting with α, as-
signing the values blocks by blocks and using the aforementioned set of
permutations. To do this, we proceed by induction on the size of α0: if α0
is complete, then the statement obviously holds. For a block B, let B be
the set of block assignments {{B, C}} such that B is picked u.a.r. in B(α0),
and C is picked u.a.r. in P(B), the set of possible assignments for B (i.e.
the assignment that are not explicitely forbidden by a block-forced variable
value).

We have:

p(α0, α) = E
B∈u.a.rB(α0);C

[p(α ∪ {B 7→ C}, α)]

= ∑
B∈B(α0)

1
|B(α0)| ∑

C∈P(B)

1
|P(B)| p(α0 ∪ {B 7→ C}, α)

= ∑
B∈B(α0)

1
|B(α0)|

· 1
|P(B)| p(α0 ∪ {B 7→ α(B)}, α)

= E
B∈u.a.r.B(α0)

[
1

|P(B)| p(α0 ∪ {B 7→ α(B)}, α)

]
.

We now define a distribution ξ over the blocks of B(α0) weighted according
to blkhd(α0 ∪ {B 7→ α(B)}, α). We have that

blkhd(α0, α) = E
(B,C)∈u.a.r.Sα0

[blkhd(α0 ∪ {B 7→ C}, α)]

= ∑
B∈B(α0)

1
|Sα0 |

blkhd(α0 ∪ {B 7→ α(B)}, α)

which allows us to determine the sum of all the weights, and so the proba-
bility of any block B is given by

pξ(B) =
blkhd(α0 ∪ {B 7→ α(B)}, α)

|Sα0 | · blkhd(α0, α)
.

We now want to introduce this probability distribution in our current expres-

45

6. PPSZ with a smaller permutation set

sion for p(α0, α):

p(α0, α) = E
B∈u.a.r.B(α0)

[
1

|P(B)| p(α0 ∪ {B 7→ α(B)}, α)

]
= ∑

B∈B(α0)

1
|B(α0)| · |P(B)| p(α0 ∪ {B 7→ α(B)}, α)

= ∑
B∈B(α0)

|Sα0 | · blkhd(α0, α)

|B(α0)| · |P(B)| ·
blkhd(α0 ∪ {B 7→ α(B)}, α)

|Sα0 | · blkhd(α0, α)

· p(α0 ∪ {B 7→ α(B)}, α)

blkhd(α0 ∪ {B 7→ α(B)}, α)

=
|Sα0 | · blkhd(α0, α)

|B(α0)|
· E

B∈ξB(α0)

[
p(α0 ∪ {B 7→ α(B)}, α)

|P(B)|blkhd(α0 ∪ {B 7→ α(B)}, α)

]
.

We apply the induction hypothesis and we get:

p(α0, α) ≥ |Sα0 | · blkhd(α0, α)

|B(α0)|
E

B∈ξB(α0)

[
2−cost(α0∪{B 7→α(B)},α)

|P(B)|

]
.

Now we use Jensen’s inequality (see Appendix A.1 on page 63) with the
convex function x 7→ 2−x and we get:

p(α0, α) ≥ blkhd(α0, α)2log
|Sα0 |
|B(α0)|

−EB∈ξB(α0)
[log |P(B)|]+EB∈ξB(α0)

[−cost(α0∪{B 7→α(B)},α)].

The cost of the block-non-frozen variables of the block is S(D)
k now and will

be 0 when the block is assigned; the probability that the block-frozen vari-
ables are not forced at the beginning of the block is 1, and this probability is
0 once the block is assigned. It could happen that the cost of other variables
increases: if some block-non-frozen variable (that currently has cost S(D)

k)
becomes frozen and if the set of permutation happens to be bad for that
specific variable (because of the invalidating of critical clause trees), then it
could happen that the cost for that specific variable increases from S(D)

k to

up to 1. This can only happen for at most O
(
(kDC)DdDn
√

n

)
variables; we will

call this potential cost increase δΩ,D,C. So we get

E
B∈ξB(α0)

[cost(α0 ∪ {B 7→ α(B)}, α)]

≤ cost(α0, α)− E
B∈ξB(α0)

[
S(D)

k · |Vbnf(α0, B)|+ |Vbfr(α0, B)|
]
+ δΩ,D,C.

Moreover, |P(B)| = 2|B|−Vbfo(α0,B); hence we get

p(α0, α) ≥ blkhd(α0, α)

· 2log
|Sα0 |
|B(α0)|

+EB∈ξB(α0)
[|Vbfo(α0,B)|−|B|+S(D)

k |Vbnf(α0,B)|+|Vbfr(α0,B)|]−cost(α0,α)−δΩ,D,C .

46

6.2. A block-wise construction for permutations

For our final statement to hold, we would need that

log
|Sα0 |
|B(α0)|

+ E
B∈ξB(α0)

[S(D)
k |Vbnf(α0, B)|]− δΩ,D,C ≥ E

B∈ξB(α0)
[|Vbnf(α0, B)|].

Unfortunately, this is not necessarily the case, even without accounting for
the δΩ,D,C term. Suppose that the only satisfying assignments at this point of
the algorithm are the all-0 assignment and the all-1 assignment (restricted to
the variables still to be assigned). Then all the variables are block-non-frozen;

on the other hand, |Sα0 | is exactly twice |B(α0)|, and so log
|Sα0 |
|B(α0)| = 1, which

is too small even for constant values of |Vbnf(α0, B)| (depending on k).
The problem of this approach is that it may happen that, even within small
blocks, some uncontrollable correlations may happen between the variables.
Using uniform random permutations allows us to control both the correla-
tions between cost and likelihood and inter-variable cost correlations in a
fairly natural way; managing to do so with any other set of permutations
has so far proven to be challenging to say the least. It stays open whether an
analysis of PPSZ with a smaller set of permutations can go through for the
multiple satisfying assignments case. Approaching the problem by consider-
ing the derandomization of the “guessing” bits before the derandomization
of the “permutation” bits might help circumventing this obstacle with re-
gards to the global derandomization.

47

Chapter 7

PPSZ with oracle

In this chapter, we investigate the question of whether we can replace the
random bits that correspond to non-frozen variables by fixed assignments.
We will consider two types of oracle: a “nice” oracle will return 0 always
when we ask it for the value of a non-frozen variable; a “poor” oracle will
return an arbitrary bit (with the underlying assumption that these bits can
be computed deterministically instead of flipped randomly). Poor oracles
may be easier to construct, because we do not necessarily need to know the
position of the non-frozen variables to be able to build them – for instance,
one could imagine oracles made of a small set of codewords such that some
codeword is guaranteed to yield a satisfying assignment for the formula,
without defining precisely if a given bit is used for a non-frozen variable
or for a frozen, not forced variable. On the other hand, nice oracles make
proofs somewhat more accessible (because we know exactly what a non-
frozen variable will be set to); moreover, if we can prove that something will
not work for a nice oracle, then it is a strong indication that it will not work
for a poor oracle either.
In this chapter, we mainly concern ourselves with nice oracles. We first
prove that the success probability of PPZ with a nice oracle is at least the
same as the success probability without an oracle. We also give a partial
proof that a nice oracle does not hurt PPSZ either; this proof, however, relies
on a strong conjecture that we have not been able to prove so far. In each of
the sections, we conclude by giving some thoughts about the translation of
the proof in the poor oracle situation.

7.1 PPZ with oracle

7.1.1 PPZ with a nice oracle

In this section, we prove the following theorem:

49

7. PPSZ with oracle

Theorem 7.1 Let PPZO be a version of PPZ that, when encountering a non-frozen
variable, sets it to 0. Then, when running PPZO(F, V) on a k-CNF formula F over
V, the probability over all permutations of V that a given variable is frozen, but is
not forced when processing it, is at most 1− 1/k.
This theorem implies the following corollary:

Corollary 7.2 The probability that PPZO(F, V) finds a satisfying assignment in
a satisfiable k-CNF formula F over a set of n variables is at least 2−n−n/k, where
PPZO is a version of PPZ that, when encountering a non-frozen variable, sets it to
0.

Proof (of Corollary 7.2) When considering a fixed permutation, PPZO suc-
ceeds if and only if it agrees on the frozen value when encountering a frozen,
non-forced variable. We can write:

Pr
π
[PPZOsucceeds] = E

π
[2−fr(F,π)],

where fr(F, π) is the number of frozen, non-forced variables encountered
when processing F with π. Using Jensen’s inequality (see Appendix A.1 on
page 63), we can write

Pr
π
[PPZOsucceeds] ≥ 2−Eπ [fr(F,π)].

By Theorem 7.1 and linearity of expectation, the corollary follows. �
The proof of the theorem relies on the notions of critical variable and critical
clauses; we repeat the definition of these concepts here.

Definition 2.2 (Critical variables and critical clauses [17]) Given an assign-
ment α ∈ satV(F), we call a variable x ∈ V critical for α if flipping the value
of x in α stops it being satisfying. This requires at least one clause in F that has x
or x̄ as a unique literal that is set to 1 by α. Such a clause is called a critical clause
for x.

Proof (of Theorem 7.1) In this proof, we will first consider (≤ 3)-CNF for-
mulas; we will then explain how the proof can be extended to (≤ k)-CNF
formulas. We first make the following observation: since we are setting
non-frozen variables to 0 whenever we encounter one, the random permu-
tation used by a given run of the algorithm fully determines the satisfying
assignment that can be returned: a run with a given permutation will either
return the satisfying assignment it is associated to, or fail to find a satisfying
assignment. We start by partitioning the permutations according to their
associated satisfying assignment, and we will show that, when considering
any set of permutations that is associated to a fixed satisfying assignment,
any variable is either forced or set by the oracle with probability at least 1/3.
Since this holds for all sets of permutations, it is also true for the whole set
of permutations, and hence the theorem holds.

50

7.1. PPZ with oracle

Given a satisfying assignment α, we define Πα as the set of permutations
associated to it. Let π ∈ Πα be some permutation. When processing the
variables of F in the order defined by π, we will encounter two types of vari-
ables: the non-frozen variables (which can, at this point in the permutation,
be set either way so that the resulting partial assignment is still compatible
with a satisfying assignment), and the frozen variables, which can only get
assigned to one value. If a variable x gets frozen, then it is critical, and it has
a critical clause. Let {x, y, z} be such a clause for the variable x. If x is the
last of the variables {x, y, z} in the permutation π, then it is automatically
set to its value, since the clause is by then reduced to a unit clause. We
re-partition Πα into Πxyz

α , Πxzy
α , Πyxz

α , Πyzx
α , Πzxy

α , and Πzyx
α , where

Πxyz
α = {π ∈ Πα | x, y, z appear in this order},

and the other sets are defined similarly.
We first consider a permutation π ∈ Πxyz

α . If x is non-frozen for this per-
mutation, then it is set to 0 by the oracle, so we assume that x is frozen
when we process it. Now we describe the permutation π by its non-frozen
variables between x and z: it looks like x{NF1}y{NF2}z, where {NF1} is
the (ordered) set of non-frozen variables between x and y, and {NF2} is the
set of non-frozen variables between y and z. Some frozen variables may be
interleaved in the permutation as well; we ignore them for our purpose. We
now consider the “rotated” permutation {NF1}y{NF2}zx, where we move
the variables from {NF1} ∪ {y} ∪ {NF2} ∪ {z} “up” from one place within
the non-frozen variables: the first variable of {NF1} is moved to the place
of x, the second variable of {NF1} is moved to the place of the first variable
of {NF1}, y is put in the place of the last variable of {NF1}, z is put in the
place of the last variable of {NF2}, and finally x is put in the place of z. For
instance, the permutation

u1 x u2 u3 u4 y u5 u6 z

where u1, u4, and u6 are non-frozen would become the permutation

u1 u4 u2 u3 y u6 u5 z x

where the elements in white stays in place whereas the elements in grey are
rotated.
With this operation, the order of the non-frozen variables in the permutation
has not changed. Hence, the permutation is in Πα, and so it is in Πyzx

α . If
x is frozen, then this rotation transformation is injective from Πxyz

α to Πyzx
α .

We can do a similar operation for permutations from Πxzy
α , and we end up

with an injective transformation from Πxzy
α to Πzyx

α .
We now consider a permutation π ∈ Πyxz

α where x is not guessed. With
the same notation as above, π is of the type y{NF3}x{NF4}z; we apply a
similar rotation (but this time only on x{NF4}z) to get a permutation of

51

7. PPSZ with oracle

type y{NF3}{NF4}zx. This rotation transformation is injective from Πyxz
α

to Πyzx
α , and we can define a similar injective transformation from Πzxy

α to
Πzyx

α .
It may happen that a permutation from Πxyz

α and a permutation from Πyxz
α

have the same image in Πyzx
α ; this is not an issue, because a permutation in

Πyzx
α still has at most two preimages. Hence, if x is frozen, at least 1/3 of

the permutations in Πα have x as a last variable (and thus it is forced).
This argument trivially generalizes to (≤ k)-CNF formulas, where we would
partition Πα into r! sets for a critical clause of size r (r ≤ k), and where a
permutation such that x is last has at most r− 1 preimages in the other sets
via similar rotations. �

7.1.2 PPZ with a poor oracle

The proof of the previous section relies on a number of assumptions. First,
it seems only possible to build such an oracle if we know that a variable
is non-frozen when we encounter it. Given this, the fact that we set it to 0
or to some arbitrary value is also an issue: when rotating the variables, if
the arbitrary values are not all equal, then the assignment that is returned
will not be the same. It may be possible to solve that problem by making
some assumptions on the “poor” oracle, but we have not investigated in this
direction so far.
Finally, also observe that this proof does not go through when considering
smaller sets of permutations (such as the ones defined in Chapter 6), because
we cannot guarantee that the rotated permutations are also part of the set of
permutations that we use.

7.2 PPSZ with oracle

Ideally, we would like to prove the following conjecture:

Conjecture 7.3 For any ε > 0, there exists D such that the probability that
PPSZO(F, V, ∅, D) finds a satisfying assignment in a satisfiable (≤ k)-CNF

formula F over a set V of n variables is at least 2−(S
(D)
k n+ε)n, where

lim
D→∞

S(D)
k = Sk =

∫ 1

0

t1/(k−1)−t

1− t
dt.

and where PPSZO is a version of PPSZ that, when encountering a non-frozen
variable, sets it to 0.

7.2.1 Problems with the analysis of standard PPSZ

At the core of the analysis of standard PPSZ is the compensation of the
effects of the likelihood and of the cost of individual assignments when

52

7.2. PPSZ with oracle

computing the probability that a satisfying assignment is returned, which is
mainly expressed in the following lemma (proven in [17]):

Lemma 2.14 ([17]) Let α0 and α be fixed and compatible. For any fixed variable
x ∈ U (α0), if we set x according to α, then

(i) the likelihood of α can only increase, i.e.

lkhd(α0 ∪ {x 7→ α(x)}, α) ≥ lkhd(α0, α)

with equality if x is frozen in F[α0].

(ii) the cost of a fixed variable y ∈ V w.r.t. α can only decrease, i.e.

cost(α0 ∪ {x 7→ α(x)}, α, y) ≤ cost(α0, α, y)

When choosing x ∈ U (α0) uniformly at random and setting it according to α, then
(iii) the likelihood of α increases on average as

E[lkhd(α0 ∪ {x 7→ α(x)}, α)] =

(
1 +
|Vnf(α0)|

n(α0)

)
lkhd(α0, α)

(iv) the cost of a fixed variable y ∈ Vfr(α0) decreases on expectation as

E[cost(α0 ∪ {x 7→ α(x)}, α, y)] ≤ cost(α0, α, y)− s
n(α0)

,

where

s =


1 if y ∈ Vfr(α0)

S(D)
k if y ∈ Vnf(α0)

0 if y ∈ Vfo(α0)

This lemma is true as is in the PPSZO setting as well – nothing in it makes
any reference to the fact that the value of non-frozen variables is chosen at
random. However, it is not useable as is in the rest of the proof: some assign-
ments will never be returned by PPSZO, and some may not be returned for
some permutations (a trivial example is the one where the all-1 assignment
and another assignment are satisfying the formula; the all-1 assignment will
never be returned by PPSZO). Hence, setting x according to a fixed assign-
ment α may not make sense in this context. Another breaking point appears
when trying to relate the distribution of PPSZO (picking a variable x, and
then a bit b) to the uniform distribution over Sα0 (the set of literals ` such
that F[α0∪{`}] is satisfiable) because the probability that a given (x, b) is cho-
sen is, in PPSZO and for a non-frozen variable x, 1

n(α0)
if α(x) = 0, but 0

otherwise.
We then tried to define another likelihood. Instead of picking elements uni-
formly at random from Sα0 , we define the set Fα0 as the set of the following
elements:

53

7. PPSZ with oracle

• for all x ∈ Vfo(α0) ∪ Vfr(α0), Fα0 contains the assignment (x, b) such
that F[α0∪{x 7→b}] is satisfiable,

• for all x ∈ Vnf(α0), Fα0 contains the assignment (x, 0).
and we define the random process AssignF(F, α0) that produces an assign-
ment on V as follows. Start with the assignment α0, and repeat the following
step until vbl(F[α0]) = ∅: Choose a value assignment ` ∈ Fα0 uniformly at
random and add ` to α0. At the end, output α0. We then define lkhdO(α0, α)
as the probability that AssignF(F, α0) returns α. But we did not manage
to come up with an analogue of Lemma 2.14 for that case: in particular,
setting a variable x according to a fixed assignment α may not make sense
with regard to Fα0 at some point (because x is non-frozen at that point and
α(x) = 1), but it may make sense at a later point (if x becomes non-frozen
in a way that is still compatible with α).

7.2.2 Discarding the likelihood

The difficulties that we encountered with coming up with a proper defini-
tion for likelihood in the PPSZO case may come from the fact that, once the
permutation π is given, the algorithm can only possibly return a single sat-
isfying assignment: it will either return the assignment that corresponds to
setting non-frozen variables to 0, or fail to return a satisfying assignment.
Consequently, it may make sense to discard the notion of likelihood alto-
gether. We can also define α(π) as the satisfying assignment that is returned
if PPSZO returns a satisfying assignment when invoked with the permuta-
tion π.
We can define the cost of a variable x as follow:
• if x ∈ Vfo(α0), cost(α0, x) = 0,

• if x ∈ Vfr(α0), cost(α0, x) = Prπ[x ∈ Guessed(F, α0, α(π), π, D)],

• if x ∈ Vnf(α0), cost(α0, x) = S(D)
k .

As previously, cost(α0) = ∑x cost(α0, x).
The problem in that case is that it is not clear if Pr[x ∈
Guessed(F, α0, α(π), π, D)] is bounded by S(D)

k as in the standard case. If
it is the case, though, we can prove that Conjecture 7.3 holds as well. We
state the following conjecture:

Conjecture 7.4 Let x ∈ Vfr(α0). Then

Pr
π
[x ∈ Guessed(F, α0, α(π), π, D)] ≤ S(D)

k .

In the standard case, this follows from the analysis of the unique case and
from the observation that, if a variable is frozen, then the proof goes through
for any fixed assignment. In the PPSZO assignment, since a given permuta-
tion yields a unique satisfying assignment, integrating over the place of x is

54

7.2. PPSZ with oracle

not feasible anymore because we are not considering the same assignment
(and hence the same critical clause tree) for all permutations. Solving this
problem seems to be the main difficulty in proving Conjecture 7.4.
Observe that an analogue of Conjecture 7.4 holds for PPZO if we replace
S(D)

k by k−1
k (both in the conjecture and in the cost definition); consequently,

what follows is another proof of Theorem 7.1.
Let us now see how the proof of Conjecture 7.3 works if we assume that
Conjecture 7.4 is true. We define p(α0) as the probability that PPSZO returns
a satisfying assignment when starting with a partial assignment α0, and we
use an induction proof over the size of the partial assignment α0. The base
case trivially holds if α0 is a full assignment.
Let x and b be random variables: x ∈ U (α0) u.a.r., b is either the forced
value by D-implication if x ∈ Vfo(α0), 0 if x ∈ Vnf(α0), and u.a.r. in {0, 1} if
x ∈ Vfr(α0). Let p(α0) be the probability that ppsz with oracle returns some
satisfying assignment. We have:

p(α0) = E
x∈u.a.rU (α0);b

[p(α0 ∪ {x 7→ b})].

(x, b) are all elements of Fα0 ∪ {(x, b) ∈ Vfr(α0)× {1}}. If (x, b) /∈ Fα0 , then
p(α0 ∪ {x 7→ b}) = 0. So we have

p(α0) = Pr[(x, b) ∈ F (α0)] · E
x;b
[p(α0 ∪ {x 7→ b}) | (x, b) ∈ Fα0]

(x; b) is in Fα0 if x ∈ Vnf(α0), if x ∈ Vfo(α0), and if x ∈ Vfr(α0) and has the
right value. So

Pr[(x, b) ∈ Fα0] = Pr[x ∈ Vnf(α0)] + Pr[x ∈ Vfo(α0)] +
1
2

Pr[x ∈ |Vfr(α0)|]

=
2n(α0)− |Vfr(α0)|

2n(α0)

= 1− |Vfr(α0)|
2n(α0)

.

Our working expression becomes

p(α0) =

(
1− |Vfr(α0)|

2n(α0)

)
E

x∈u.a.rU (α0);b
[p(α0 ∪ {x 7→ b}) | (x, b) ∈ Fα0],

and then

p(α0) =

(
1− |Vfr(α0)|

2n(α0)

)
E

(x,b)∈u.a.r.Fα0

[p(α0 ∪ {x 7→ b})],

because when we pick x u.a.r. in U (α0) it corresponds to a single (x, b) ∈
Fα0 .

55

7. PPSZ with oracle

So now we apply Jensen’s inequality (see Appendix A.1 on page 63) and our
induction hypothesis:

p(α0) ≥ 2log
(

1− |Vfr(α0)|
2n(α0)

)
−E[− log(p(α0∪{x 7→b}))]

≥ 2log
(

1− |Vfr(α0)|
2n(α0)

)
−E[cost(α0∪{x 7→b})].

To finish the computation, we prove the following lemma:

Lemma 7.5 If (x, b) ∈ Fα0 is chosen u.a.r., then

E
(x,b)∈u.a.r.Fα0

[cost(α0) ∪ {x 7→ b}] ≤ cost(α0)−
|Vfr(α0)|

n(α0)
− |Vnf(α0)|S(D)

k
n(α0)

.

Proof We analyze the cost decrease contribution of the different types of
variables separately. Each variable forced in state α0 contributes zero cost
both before and after the step. For a non-frozen variable y ∈ Vnf(α0), with
probability 1/n(α0), the variable is chosen next, and its cost drops from
S(D)

k to 0. For a frozen variable, the probability that y is guessed is reduced
by 1/n(α0) after one step, because with probability 1/n(α0), y comes next
in π and is guessed now. This 1/n(α0) is counted in cost(α0) but not in
E[cost(α0 ∪ {x 7→ b}]. Hence, adding over all variables, we get the desired
result. �
Now we put everything together. Our expression becomes

p(α0) ≥ 2log
(

1− |Vfr(α0)|
2n(α0)

)
−cost(α0)+

|Vfr(α0)|
n(α0)

+
|Vnf(α0)|S

(D)
k

n(α0) ,

and so we want to prove that

log
(

1− |Vfr(α0)|
2n(α0)

)
+
|Vfr(α0)|

n(α0)
+
|Vnf(α0)|S(D)

k
n(α0)

≥ 0.

Observe that |Vfr(α0)| can only go from 0 to n(α0). Hence, it’s enough to
prove that, for 0 ≤ x ≤ 1,

f (x) := log
(

1− x
2

)
+ x ≥ 0.

We have f (0) = f (1) = 0, and

f ′(x) =
1

ln 2(x− 2)
+ 1·,

which is positive for x = 0 and admits a single zero between 0 and 1 for
x = 2− 1

ln 2 , which concludes the proof, as f starts from 0, is increasing from
0 to its maximum, and then decreases to 0.
Also observe that this proof does not rely on the value of S(D)

k . If Conjecture
7.4 does not completely hold, we may be able to use this leeway in order to
prove Conjecture 7.3.

56

7.2. PPSZ with oracle

7.2.3 Conclusion and outlook

If we want to keep Prπ[x ∈ Guessed(F, α0, α(π), π, D)] as the cost for frozen,
non forced variables, then Conjecture 7.4 must be proven for the complete
proof to work. It may however be that this is not the right way to define
costs for PPSZO, and that another cost function definition may allow us to
conclude the proof of Conjecture 7.3.
As for the situation for a poor oracle, the positive point is that the current
proof for the multiple assignment case does not a priori depend on the place
of the non-frozen variable or on the value that we set for said non-frozen
variable. The negative point is obviously that these issues may arise in the
proof of Conjecture 7.4. Moreover, even if this conjecture holds, it may not
translate easily to a version for a poor oracle. If an analogue of Conjecture
7.4 holds for a poor oracle, though, then the analogue of Conjecture 7.3
would hold for a poor oracle as well, since nothing in our proof depends on
the specifics of the oracle.

57

Chapter 8

Conclusion

8.1 Results

In this thesis, we have explored a number of avenues relating to the de-
randomization of PPSZ. We started by studying the previous work on the
derandomization of PPZ by Paturi, Pudlák and Zane [12], and on the deran-
domization of PPSZ in the unique satisfying assignment case by Rolf [13].
We then provided an alternative proof of the running time of PPSZ in the
randomized case: this proof allows us to give bounds for the probability
that a given satisfying assignment is returned, and it implies the previous
bound by Hertli [5]; this alternative proof might be useful to tackle other
questions related to PPSZ and its analysis.
To derandomize PPSZ, we need to derandomize the bits used for the permu-
tation, the bits used for guessing the forced variables, and the bits used to
set the non-frozen variables. As a first step, we tried to answer the question
whether we could prove bounds for the randomized PPSZ algorithm when
considering smaller permutation sets than the complete set of permutations
of the set of variables of a formula; for a small enough set, the idea would
then be to enumerate all possibilities. This approach was used with some
measure of success in [12] and [13]. We have not managed to derive bounds
for this case, but we now have some idea of why this problem is difficult to
tackle: it is hard to control the inter-variable correlations if the permutation
set is not uniform, and limited independence does not seem to be sufficient
to guarantee this much in this regard; and without these guarantees, the
analysis of that case (and whether or not PPSZ works at all with a smaller
set of permutations) has so far been outside of our grasp.
For the non-frozen variables, our approach was to try to consider them set
externally to an arbitrary value by some oracle. Since a non-frozen variable
can, by definition, be set to any value when it is encountered, it seems like a
reasonable assumption that the success probability of the algorithm would
not be negatively affected. We have shown that it is indeed the case for the

59

8. Conclusion

PPZ algorithm for the 0-oracle; the full proof of this for the PPSZ algorithm
still eludes us: when conjecturing that the probability of a frozen variable to
be guessed stayed the same, we were able to prove that, independently of
the considered oracle, the probability of success for PPSZ stayed the same
as well, but the proof of the conjecture has resisted our attempts so far, even
for the 0-oracle, and there is no guarantee that a proof for a 0-oracle would
translate well into a proof for a weaker oracle that assigns arbitrary values
to the non-frozen variables.
That resistance seems to come at least in part from the same issue as the
derandomization of the permutation set. Setting non-frozen variables to
fixed values partitions the permutation set into permutations that lead to
a given satisfying assignment; but within one of these sets, we miss the
independence and uniformity properties that we would like to have for the
analysis in its current iteration.
We did not explore much the direction of building such an oracle; such a
direction could raise interesting questions for future work on the topic.

8.2 Future directions

In this section, we suggest some directions for future work in the endeavour
of derandomizing PPSZ.

8.2.1 Building an oracle for non-frozen variables

Assuming that our proof plan can yield something, one direction that we did
not investigate much is the building of an oracle for non-frozen variables. It
is unclear if it would be easier to consider the problem of frozen guessed
variables separately or as part of this oracle. It is not clear either whether any
oracle can be built in any reasonable (subexponential or low-exponential)
amount of time. There are, however, arguments in favor of the feasability
of such a task. If a formula has a lot of frozen variables, then the satisfying
assignment can be coded with a small number of bits, corresponding to the
non-frozen variables (of which we do not have too many by hypothesis),
and to the frozen guessed variables (of which we should not have too many
either because the frozen variables should get forced at some point, at least
for some permutation). If we do not need too many bits, then we can allow
ourselves to consider all possible bitstrings of the corresponding length. On
the other hand, if a formula has a lot of satisfying assignments, then there
exists a relatively small set of assignments that is guaranteed to contain a
satisfying assignment, as proven in this lemma:

Lemma 8.1 Consider a F the set of ≤ k-CNF formula which have at least 2cn satis-
fying assignments, where 0 < c ≤ 1 is a constant. Then exists a set of assignments

60

8.2. Future directions

A of size O(2(1−c)nnk) such that, for every F ∈ F , there exists α ∈ A such that α
satisfies F.

Proof The proof relies on a probabilistic argument. Suppose that we pick
` assignments uniformly at random from all the 2n possible assignments
over n variables. The probability that a fixed formula F is satisfied by a
random assignment α is at least 2(c−1)n; hence the probability that F is not
satisfied by a set of ` random assignments is (1− 2(c−1)n)`. The expected
number of formulas from F that are not satisfied by any assignment from
the ` assignments is |F | · (1− 2(c−1)n)` ≤ |F| · e−2(c−1)n·`. This means that
if ` > 2(1−c)n · ln |F |, then the expected number of unsatisfied formulas is
strictly less than 1. The size of F has, as an upper bound, the total number
of ≤ k-CNF formulas; the total number of ≤ k-CNF formulas is bounded by
2(2n)k

(every ≤ k-clause contains up to k literals that are chosen in a size of
size 2n, accounting for positive and negative literals, and every formula can
choose any number of these ≤ k-clauses). Hence, choosing ` ≥ 2(1−c)n(2n)k

is sufficient for the lemma to hold. �
This proof, however, does not allow us to explicitely construct the set A.
Moreover, there is no guarantee that a formula that has a lot of non-frozen
variables also has a lot of satisfying assignments. To pick a very simplistic
example, when starting to process a formula that only has the all-0 and the
all-1 assignment as satisfying assignments, that formula actually has n non-
frozen variables. Of course, in this case, setting the first variable will freeze
all the other variables; but it may be possible to build a set of assignments
that is small and that contains a high number of non-frozen variables that
stay non-frozen for some non-trivial number of iterations. Two approaches
can be then attempted. It may be possible to prove that we can also cover that
case with a relatively small number of bitstrings. It might also be possible to
show that such cases do not happen in the realm of k-SAT; this direction of
work would probably steer towards questions around the possible structure
of satisfying assignments for k-SAT, which is also a topic of interest (see for
instance [4] for a discussion of the connectivity of the solution space).
Finally, it might be helpful to consider the building of an oracle not as a
complete string, but as a set of block strings. The idea would be to split the
variables into blocks of size

√
n originally. This does not help us much per

se, because if we consider all possible oracles for
√

n variables and repeat
that for each

√
n blocks, we still end up with the same number of possibil-

ities. However, considering blocks allows us to easily interleave a “forcing”
operation: before trying the oracles for a given block, we first start by setting
to their values all the variables from that block that are forced at that point
(“block-forced”, in the terminology of Section 6.2.3 on page 44). Since the
block size is o(n), the probability that a frozen variable is block-forced has
the same upper bound as in the usual analysis, up to a different epsilon.
The idea, when using these blocks, is to reduce the size of the oracle for the

61

8. Conclusion

blocks that come late in the permutation when a lot of variables are frozen
(because then we will have a lot of block-forced variables, which we do not
need in the oracle). Obviously, if there is a large number of non-frozen vari-
ables, then this approach will not force a lot of variables, but this may help
the analysis to go through if considering a case distinction approach.
To summarize, here are a few questions that can be asked around the concept
of oracle for non-frozen variables:
• Can Lemma 8.1 be transformed into a deterministic construction of a

set A?

• What can be done for the case where there is a lot of non-frozen vari-
ables but only a few satisfying assignments? Can such a case even
happen?

• Is it possible to deterministically and efficiently (for some definition of
efficiently) build an oracle for non-frozen variables?

• Would some insight on the structure of the solution space for k-SAT
help to build such an oracle?

8.2.2 Other questions

The oracle situation aside, this thesis also allowed us to formulate a number
of other questions:
• Can PPZ be fully derandomized, i.e. with the same runtime as the

randomized version expected runtime?

• Can PPSZ be executed with a smaller set of permutations with the
same success probability, or is there a counter-example that proves
that it cannot?

• Can PPZ with a “nice” oracle be executed with a smaller set of permu-
tations, or is there a counter-example that proves that it cannot?

• Can PPSZ be run with an oracle (be it “nice” or “poor”) without affect-
ing its success probability too much? Furthermore, is it possible to do
so with a smaller set of permutations?

• Can another approach to the problem yield better results than what we
have tried in this thesis? In particular, there has been some previous
work on the reduction of k-SAT to Unique-k-SAT ([2]); a determinis-
tic polynomial reduction from k-SAT to Unique-k-SAT, if such exists,
would directly yield a derandomization of PPSZ.

It is our hope that this thesis started paving the way for future research, and
that the questions we ask here will eventually find an answer.

62

Appendix A

Auxilliary statements and deferred
proofs

Unless specified otherwise, the results of this appendix are stated and
proven as is in [17].

A.1 Jensen inequality

Theorem A.1 Let I be a real interval. If f : I → R is a convex function and X is
a random variable that attains values in I only, then

E[f (X)] ≥ f (E[X]),

provided that both expectations exist.

Proof Let µ = E[X]. Let λ be such that f (x) ≥ f (µ) + λ(x− µ) for all x ∈ I.
λ exists because f is convex. Due to linearity of expectation,

E[f (X)] ≥ E[f (µ) + λ(X− µ)] = f (µ) + λ(E[X]− µ) = f (µ) = f (E[X]),

and we are done. �
We can give the analogue for concave functions:

Theorem A.2 Let I be a real interval. If f : I → R is a concave function and X is
a random variable that attains values in I only, then

E[f (X)] ≤ f (E[X]),

provided that both expectations exist.

Proof Let µ = E[X]. Let λ be such that f (x) ≤ f (µ) + λ(x− µ) for all x ∈ I.
λ exists because f is concave. Due to linearity of expectation,

E[f (x)] ≤ E[f (µ) + λ(X− µ)] = f (µ) + λ(E[x]− µ) = f (µ) = f (E[X]),

and we are done. �

63

A. Auxilliary statements and deferred proofs

A.2 Binary coefficients and entropy function

Lemma A.3 For n ≥ 1 and 0 < ε < 1/2, it holds that

∑
i=0
bεnc

(
n
i

)
≤ 2H(ε)n,

where
H(ε) = −ε log ε− (1− ε) log(1− ε).

Proof We have

1 = (ε + (1− ε))n

=
n

∑
i=0

(
n
i

)
εi(1− ε)n−i (binomial theorem)

=
n

∑
i=0

(
n
i

)
(1− ε)n

(
ε

1− ε

)i

≥
bεnc
∑
i=0

(
n
i

)
(1− ε)n

(
ε

1− ε

)i

(truncation of the sum)

≤
bεnc
∑
i=0

(
n
i

)
(1− ε)n

(
ε

1− ε

)εn (
ε

1− ε
≤ 1 and i ≤ εn

)

=
bεnc
∑
i=0

(
n
i

)
εεn(1− ε)n−εn,

which, combined with

2−nH(ε) = εnε(1− ε)n(1−ε),

yields the desired statement. �

A.3 FKG inequality

Let A = {A1, A2, ..., Ar} be a collection of independent binary random vari-
ables. An event E is said to be determined by A if there exists a fixed list
SE ⊆ 2A such that E = {{A ∈ A | A = 1} ∈ SE}, or, informally speaking, if
knowing the values of A leads to knowing whether E occurs. Moreover, if
SE is upwards heritary, i.e. if

∀A ⊇ U ⊇ V : V ∈ SE ⇒ U ∈ SE,

then E is called monotonically increasing in A.

64

A.3. FKG inequality

Theorem A.4 (FKG inequality) Let A = {A1, A2, ..., Ar} be a collection of in-
dependent binary random variables and E1 and E2 events which are determined by
A and monotonically increasing in A. Then

Pr[E1 ∧ E2] ≥ Pr[E1] · Pr[E2].

Proof We proceed by induction on r.
For the base case, let r = 1. Then, there are only two non-empty monoton-
ically increasing events determined by A1: either an event that occurs for
both values of A1 or an event that occurs only if A1 = 1. If E1 = E2, the
statement is trivial. Let now E1 be the first of these cases and E2 be the other.
If p is the probability that A1 = 1, then the probability that both events occur
is p, the probability that E1 occurs is 1 and the probability that E2 occurs is
p, establishing the claim.
For the induction step, let us assume that the statement holds for smaller
values of r and let p be the probability that A1 = 1. We can rewrite the
right-hand side of our claim using the law of total probability as:

Pr[E1] · Pr[E2] = (p Pr[E1 | A1 = 1] + (1− p)Pr[E1 | A1 = 0])
· (p Pr[E2 | A1 = 1] + (1− p)Pr[E2 | A1 = 0])

If we denote eij = Pr[Ei|A1 = j], we get

Pr[E1] · Pr[E2] = p2e11e21 + p(1− p)(e11e20 + e10e21) + (1− p)2e10e20.

The mutual independence of A together with the monotonicity of both E1
and E2 in A1 implies that both events can only be more likely in the condi-
tional space determined by {A1 = 1} than in the case {A1 = 0}, thus we
get e11 ≥ e10 and e21 ≥ e20. We can use this to estimate the mixed term
in our expansion: consider e11 ≥ e10 to be weights and the mixed term to
be a weighted sum of e21 ≥ e20. Currently, the larger weight accompanies
the smaller summand. Thus, if we exchange the weights so that the larger
summand gets the larger weight, the weighted sum can only increase. This
yields

Pr[E1] · Pr[E2] ≤ p2e11e21 + p(1− p)(e10e20 + e11e21) + (1− p)2e10e20

= pe11e21 + (1− p)e10e20.

It is now time to invoke the induction hypothesis. We have assumed that the
statement holds for smaller r. The events E1 and E2 are, in the conditional
space of {A1 = 1}, determined by A2, A3, ...Ar and monotonically increasing
in these variables. Therefore, in the conditional space of {A1 = 1}, the FKG
inequality holds for E1 and E2 by the induction hypothesis, yielding that

e11e21 ≤ Pr[E1 ∧ E2 | A1 = 1].

65

A. Auxilliary statements and deferred proofs

Analogously:
e10e20 ≤ Pr[E1 ∧ E2 | A1 = 0].

Consequently, we get

Pr[E1] · Pr[E2]

≤ p Pr[E1 ∧ E2 | A1 = 1] + (1− p)Pr[E1 ∧ E2 | A1 = 0] = Pr[E1 ∧ E2]

as desired, by applying once more the law of total probability. �

A.4 An inequality about logarithms

Lemma A.5 For x ≥ 0, we have

logd(1 + x) ≥ logd(e)
x

1 + x
.

Proof As logd(x) is an antiderivative of logd(e)1/x and log(1) = 0, we have

logd(1 + x) =
∫ 1+x

1
logd(e)

1
t

dt ≥
∫ 1+x

1
logd(e)

1
1 + x

dt = logd(e)
x

1 + x
.

as desired. �

A.5 w-wise independent probability spaces

This section aims at giving a proof of the following theorem:

Theorem 3.1 ([1],[13]) For every n, w such that 1 ≤ w ≤ n, there exists a
probability space Ω(n, w) of size O(nw/2) and w-wise independent random vari-
ables y1, ..., yn over Ω(n, w), each of which takes value 0 or 1 with probability 1/2.
Ω(n, w) can be constructed in polynomial time.
This theorem is a corollary of the proof of the following theorem:

Theorem A.6 ([1]) Suppose n = 2k − 1 and d = 2t + 1. Then there exists a
symmetric probability space Ω of size 2(n + 1)t and d-w-wise independent random
variables y1, ..., yn over Ω each of which takes the values 0 and 1 with probability 1

2 .
The space and the variables are explicitly constructed, given a representation of the
field F = GF(2k) as a k-dimensional algebra over GF(2).

Proof ([1]) Let x1, ..., xn be the n nonzero elements of F, represented as col-
umn vectors of length k over GF(2). Let H be the following 1 + kt by n
matrix over GF(2):

H =


1 1 . . . 1
x1 x2 . . . xn
x3

2 x3
2 . . . x3

n
...

...
. . .

...
x2t−1

1 x2t−1
2 . . . x2t−1

n


66

A.6. A correlation inequality

The following lemma holds:

Lemma A.7 ([1]) Any set of d = 2t+ 1 columns of H is linearly independent over
GF(2).

Proof ([1]) Let J ⊂ {1, 2, ..., n} be a subset of cardinality |J| = 2t + 1 of the
set of indices of the columns of H. Suppose that ∑i∈J zjHj = 0, where Hj
denotes the jth column of H and zj ∈ GF(2). We want to prove that zj = 0
for all j ∈ J. By the assumption,

∑
j∈J

zjxi
j = 0 (A.1)

for i = 0 and for every odd i satisfying 1 ≤ i ≤ 2t− 1 (because these are the
powers of x that exist in H). Suppose, now, that a = 2b · `, where ` ≤ 2t− 1
is an odd number. By squaring the equation (A.1) b times, where i = `,
using the fact that (u + v)2 = u2 + v2 mod 2 and the fact that since each
zj is either 0 or 1, the equality zj = z2

j holds for all j, we conclude that the
equation (A.1) holds for i = a. Consequently, equation (A.1) holds for all
0 ≤ i ≤ 2t. This is a homogeneous system of 2t+ 1 linear equations in 2t+ 1
variables. The matrix of the coefficients is a Vandermonde matrix, which is
nonsingular. Thus the only solution is the trivial one zj = 0 for all j ∈ J,
completing the proof of the lemma. �
Returning to the proof of the theorem, we define Ω = {1, 2, ..., 2(n+ 1)t} and
let A = (aij), i ∈ Ω, 1 ≤ j ≤ n be the (0, 1)-matrix whose 2(n + 1)t = 2kt+1

rows are all the linear combinations (over GF(2)) of the rows of H. The
sample space Ω is now endowed with the uniform probability measure, and
the random variable yj is defined by the formula yj(i) = aij for all i ∈ Ω, 1 ≤
j ≤ n. It remains to show that the variables yj are d-wise independent, and
that each of them takes the values 0 and 1 with equal probability. For this,
we have to show that, for every set J of up to d columns of A, the rows of
the |Ω| by |J| submatrix AJ = (aij), i ∈ Ω, j ∈ J take on each of the 2|J|

(0, 1) vectors of length J equally often. By Lemma A.7, the columns of the
corresponding submatrix HJ of H are linearly independent. The number
of rows of AJ that are equal to any given vector is precisely the number
of linear combinations of the rows of HJ that are equal to this vector. This
number is the number of solutions of a system of |J| linearly independent
linear equations in kt + 1 variables, which is 2kt+1−|J|, independent of the
vector of free coefficients. This completes the proof of the theorem. �

A.6 A correlation inequality

Lemma 5.3 ([17]) Let A, B ∈ R be random variables and a, b, ā, b̄ ∈ R fixed
numbers such that A ≥ a and B ≤ b always, and E[A] = ā and E[B] = b̄. Then

E[A · B] ≤ ab̄ + bā− ab.

67

A. Auxilliary statements and deferred proofs

Proof We can write

E[A · B] = E[(A− a) · B] + a E[B]

and then use B ≤ b and A ≥ a to obtain

E[A · B] ≤ b E[A− a] + aE[B] = bā− ba + ab̄,

as claimed. �

68

Bibliography

[1] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley, second
edition, 2004.

[2] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamo-
han Paturi. The complexity of unique k-SAT: An isolation lemma for
k-CNFs. In Computational Complexity, 2003. Proceedings. 18th IEEE An-
nual Conference on, pages 135–141. IEEE, 2003.

[3] Stephen A Cook. The complexity of theorem-proving procedures. In
Proceedings of the third annual ACM symposium on Theory of computing,
pages 151–158. ACM, 1971.

[4] P. Gopalan, Ph. G. Kolaitis, E. N. Maneva, and C. H. Papadimitriou.
The connectivity of boolean satisfiability: Computational and structural
dichotomies. In In Proceedings of ICALP 2006, pages 346–357, 2006.

[5] Timon Hertli. 3-SAT faster and simpler – Unique-SAT bounds for PPSZ
hold in general. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 277–284. IEEE, 2011.

[6] Isabelle Hurbain. Understanding the PPSZ algorithm for ClSP.
Semester thesis, Eidgenössische Technische Hochschule ETH Zürich,
2013.

[7] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which
problems have strongly exponential complexity? In Foundations of Com-
puter Science, 1998. Proceedings. 39th Annual Symposium on, pages 653–
662. IEEE, 1998.

[8] Leonid Levin. Universal search problems (Russian: Óíèâåðñàëüíûå

çàäà÷è ïåðåáîðà, Universal’nye perebornye zadachi). Problems of Infor-
mation Transmission (Russian: Ïðîáëåìû ïåðåäà÷è èíôîðìàöèè, Prob-
lemy Peredachi Informatsii), 9(3):115–116, 1973. Translated to English by

69

Bibliography

Trakhtenbrot, B. A. (1984). ”A survey of Russian approaches to perebor
(brute-force searches) algorithms”. Annals of the History of Computing
6 (4): 384–400.

[9] Kazuhisa Makino, Suguru Tamaki, and Masaki Yamamoto. Derandom-
izing HSSW algorithm for 3-SAT. In Computing and Combinatorics, pages
1–12. Springer, 2011.

[10] Robin A. Moser and Dominik Scheder. A full derandomization of
Schöning’s k-SAT algorithm. In Proceedings of the 43rd annual ACM sym-
posium on Theory of computing, pages 245–252. ACM, 2011.

[11] Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane.
An improved exponential-time algorithm for k-SAT. Journal of the ACM
(JACM), 52(3):337–364, 2005.

[12] Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability cod-
ing lemma. In Foundations of Computer Science, 1997. Proceedings., 38th
Annual Symposium on, pages 566–574. IEEE, 1997.

[13] Daniel Rolf. Derandomization of PPSZ for Unique-k-SAT. In Theory and
applications of satisfiability testing, pages 216–225. Springer, 2005.

[14] Dominik A. Scheder. Algorithms and Extremal Properties of SAT and CSP.
PhD thesis, Eidgenössische Technische Hochschule ETH Zürich, Zürich,
2011.

[15] Uwe Schöning. A probabilistic algorithm for k-SAT and constraint satis-
faction problems. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 410–414. IEEE, 1999.

[16] Mark N. Wegman and J. Lawrence Carter. New classes and applications
of hash functions. In Foundations of Computer Science, 1979., 20th Annual
Symposium on, pages 175–182. IEEE, 1979.

[17] Emo Welzl. Boolean Satisfiability – Combinatorics and Algorithms, Lec-
ture notes, 2013.

[18] Emo Welzl and Robin Moser. Satisfiability of Boolean
Formulas – Special assignment set 3 – Exercise 2, 2012.
http://www.ti.inf.ethz.ch/ew/courses/SAT12/spa3.pdf.

70

	Contents
	Preliminaries
	Introduction and notation
	Motivation
	Notation
	Notions specific to the satisfiability of boolean formulas
	General notions

	The PPZ and PPSZ algorithms
	The PPZ algorithm
	The PPSZ algorithm
	Variable classification for PPSZ
	Critical clause trees
	Cost function

	First attempts at derandomizing PPZ and PPSZ
	Building a permutation probability space
	Limited derandomization of PPZ
	Derandomization of PPZ in the j-isolated or unique case

	Derandomization of PPSZ in the unique case
	Properties of the random permutation
	Reachable nodes in critical clause trees
	A derandomized algorithm

	Elements for the derandomization of PPSZ
	Derandomization plan
	Main ideas for derandomization
	Questions explored in this thesis

	Probability of returning a given assignment
	PPSZ with a smaller permutation set
	The set (n, w, L)
	Probability of a variable to be guessed
	Likelihood evolution

	A block-wise construction for permutations
	Construction of the permutation set
	Invalidating critical clause trees
	Probability of returning a given assignment

	PPSZ with oracle
	PPZ with oracle
	PPZ with a nice oracle
	PPZ with a poor oracle

	PPSZ with oracle
	Problems with the analysis of standard PPSZ
	Discarding the likelihood
	Conclusion and outlook

	Conclusion
	Results
	Future directions
	Building an oracle for non-frozen variables
	Other questions

	Auxilliary statements and deferred proofs
	Jensen inequality
	Binary coefficients and entropy function
	FKG inequality
	An inequality about logarithms
	w-wise independent probability spaces
	A correlation inequality

	Bibliography

